论文标题
开放式域适应的渐进图表学习
Progressive Graph Learning for Open-Set Domain Adaptation
论文作者
论文摘要
域移位是视觉识别中的一个基本问题,通常在源和目标数据遵循不同的分布时会出现。现有的域适应方法可以解决此问题在封闭设置中起作用的方法,假设源和目标数据共享完全相同的对象类别。在本文中,我们解决了一个更现实的开放集域移动问题,其中目标数据包含源数据中不存在的其他类别。更具体地说,我们引入了端到端的渐进式学习(PGL)框架,其中集成了具有情节训练的图形神经网络以抑制基本的条件转移和对抗性学习,以缩小源和目标分布之间的差距。与现有的开放设定适应方法相比,我们的方法可以确保达到目标误差的更严格的上限。对三个标准开放设定基准测试的广泛实验证明,我们的方法在开放式结构域适应中的表现明显优于最先进的。
Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.