论文标题
垂直双曲线4个manifolds的签名
The signature of cusped hyperbolic 4-manifolds
论文作者
论文摘要
在本说明中,我们表明每个整数都是有限体积的非紧凑,定向,双曲线4个manifold的签名,并在此类歧管的地理位置上给出一些部分结果。主要成分是长长和REID的定理,以及具有一些特殊拓扑特性的双曲线24细胞歧管的明确结构。
In this note we show that every integer is the signature of a non-compact, oriented, hyperbolic 4-manifold of finite volume, and give some partial results on the geography of such manifolds. The main ingredients are a theorem of Long and Reid, and the explicit construction of a hyperbolic 24-cell manifold with some special topological properties.