论文标题

基于湍流模型最小校正的平均流数据同化:应用于湍流的高雷诺数向后朝向步骤

Mean-flow Data Assimilation based on minimal correction of turbulence models: application to turbulent high-Reynolds number backward-facing step

论文作者

Franceschini, Lucas, Sipp, Denis, Marquet, Olivier

论文摘要

在本文中,我们提供了一种方法,以重建来自几个时间平均测量值的高雷诺数湍流。在RE = 28275处的向后朝向步骤上的湍流被认为是为了说明该方法的潜力。基于变异方法的数据辅助过程包括通过调整依赖空格的源术语来纠正给定的基线模型,以使相应的解决方案匹配可用测量值(此处从直接数字模拟获得)。此处选择的基线模型由雷诺(Reynolds)平均 - 螺旋杆(RANS)方程式组成,该方程与湍流Spalart-Allmaras模型封闭。我们研究了两个可能的调谐函数:动量方程中的一个源项,能够通过Boussinesq近似和湍流方程中的源术语来补偿雷诺压力建模中的缺陷,从而改变了涡流的产生和耗资之间的平衡。平均重建的质量在很大程度上取决于基线模型和测量数量。在许多测量值的情况下,使用模型在动量方程中校正的模型获得了非常准确的平均流量重建,而在湍流模型中调谐源项时,重建更近似。在少数测量值的情况下,校正的湍流模型的“刚度”是有利使用的,并允许最佳的平均重建。根据源项和测量值之间线性输入 /输出算子的奇异分解,进一步讨论了模型的灵活性 /刚度。

In this article, we provide a methodology to reconstruct high-Reynolds number turbulent mean-flows from few time-averaged measurements. A turbulent flow over a backward-facing step at Re = 28275 is considered to illustrate the potential of the approach. The data-assimilation procedure, based on a variational approach, consists in correcting a given baseline model by tuning space-dependent source terms such that the corresponding solution matches available measurements (obtained here from direct-numerical simulations). The baseline model chosen here consists in Reynolds-Averaged-Navier-Stokes (RANS) equations closed with the turbulence Spalart-Allmaras model. We investigate two possible tuning functions: a source term in the momentum equations, which is able to compensate for the deficiencies in the modeling of the Reynolds stresses by the Boussinesq approximation and a source term in the turbulence equation, which modifies the balance between the eddy-viscosity production and dissipation. The quality of the mean-flow reconstruction strongly depends on the baseline model and on the quantity of measurements. In the case of many measurements, very accurate reconstructions of the mean-flow are obtained with the model corrected by the source term in the momentum equations, while the reconstruction is more approximate when tuning the source term in the turbulence model. In the case of few measurements, this "rigidity" of the corrected turbulence model is favourably used and allows the best mean-flow reconstruction. The flexibility / rigidity of a model is further discussed in the light of a singular-value decomposition of the linear input / output operator between source term and measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源