论文标题
用各向异性和缺氧触发的运动性增强对神经胶质瘤的侵袭进行建模:从细胞下动力学到具有多个出租车的宏观PDE
Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: from subcellular dynamics to macroscopic PDEs with multiple taxis
论文作者
论文摘要
我们推断出一种用于利用DTI数据的神经胶质瘤侵袭模型,并考虑了脑组织的动力学,该模型通过过度的酸度产生而被肿瘤细胞积极降解,并且还根据组织纤维的局部取向。我们的方法具有多尺度特征:我们从对单细胞动力学的微观描述开始,包括肿瘤微环境的生化和/或生物物理效应,一方面转化为细胞应力和相应的力,另一方面转化为受体结合动力学;这些导致介质水平涉及涉及运输术语W.R.T.的动力学方程。所有动力学变量,并最终通过适当的升级,以与多个出租车的胶质瘤密度进行宏观反应扩散方程,并与(integro-)微分方程相连,表征了酸度和宏观和中镜组织的演变。根据局部组织各向异性,我们的方法还允许在快速和较慢的移动状态,扩散和漂移主导的方案之间进行切换。我们执行数值模拟来研究解决方案W.R.T.的行为。组织动力学的各种场景和每个战术术语的优势,还表明该模型如何用于通过剂量绘画进行基于数值坏死的肿瘤分级或支持放射治疗计划。我们还提供了有关在这种多尺度建模方法中包括细胞水平环境影响的替代方法的讨论,最终以(多个)出租车的宏观限制为导致。
We deduce a model for glioma invasion making use of DTI data and accounting for the dynamics of brain tissue being actively degraded by tumor cells via excessive acidity production, but also according to the local orientation of tissue fibers. Our approach has a multiscale character: we start with a microscopic description of single cell dynamics including biochemical and/or biophysical effects of the tumor microenvironment, translated on the one hand into cell stress and corresponding forces and on the other hand into receptor binding dynamics; these lead on the mesoscopic level to kinetic equations involving transport terms w.r.t. all kinetic variables and eventually, by appropriate upscaling, to a macroscopic reaction-diffusion equation for glioma density with multiple taxis, coupled to (integro-)differential equations characterizing the evolution of acidity and macro- and mesoscopic tissue. Our approach also allows for a switch between fast and slower moving regimes, %diffusion- and drift-dominated regimes, according to the local tissue anisotropy. We perform numerical simulations to investigate the behavior of solutions w.r.t. various scenarios of tissue dynamics and the dominance of each of the tactic terms, also suggesting how the model can be used to perform a numerical necrosis-based tumor grading or support radiotherapy planning by dose painting. We also provide a discussion about alternative ways of including cell level environmental influences in such multiscale modeling approach, ultimately leading in the macroscopic limit to (multiple) taxis.