论文标题
自旋玻璃相中有限尺寸(ISING)自旋玻璃杯的性质
Nature of the Spin Glass Phase in Finite Dimensional (Ising) Spin Glasses
论文作者
论文摘要
自旋眼镜是复杂系统的范式。这些材料的动态非常缓慢。但是,有限维系统中自旋玻璃相的性质仍然存在争议。已经提出了描述低温相的不同理论:液滴,复制对称性断裂和混乱对。我们介绍了自旋玻璃的临界特性的分析研究,特别是在相变的临界指数,磁场中存在相变的存在,计算较低的临界维度(在存在/不存在磁场的情况下)。我们还根据转移的概念介绍了一些严格的结果。最后,我们报告了有关构建Aizenman-Wehr转移的一些数值结果,自旋玻璃相中的相关函数的缩放和田野中的相变的存在,并与不同理论的预测对抗。
Spin glasses are the paradigm of complex systems. These materials present really slow dynamics. However, the nature of the spin glass phase in finite dimensional systems is still controversial. Different theories describing the low temperature phase have been proposed: droplet, replica symmetry breaking and chaotic pairs. We present analytical studies of critical properties of spin glasses, in particular, critical exponents at and below the phase transition, existence of a phase transition in a magnetic field, computation of the lower critical dimension (in presence/absence of a magnetic field). We also introduce some rigorous results based on the concept of metastate. Finally, we report some numerical results regarding the construction of the Aizenman-Wehr metastate, scaling of the correlation functions in the spin glass phase and existence of a phase transition in a field, confronting these results with the predictions of different theories.