论文标题

通过几何形状限制了实时限制的单眼RGB图像对车辆的单发3D检测

Single-Shot 3D Detection of Vehicles from Monocular RGB Images via Geometry Constrained Keypoints in Real-Time

论文作者

Gählert, Nils, Wan, Jun-Jun, Jourdan, Nicolas, Finkbeiner, Jan, Franke, Uwe, Denzler, Joachim

论文摘要

在本文中,我们提出了一种新型的3D单枪对象检测方法,用于在单眼RGB图像中检测车辆。我们的方法通过预测其他回归和分类参数,从而使运行时接近纯2D对象检测,从而将2D检测到3D空间。在几何约束下,将其他参数转换为网络内的3D边界框关键点。我们提出的方法具有完整的3D描述,包括所有三个旋转角度,而没有任何标记为对象方向的地面真相数据的监督,因为它着重于图像平面中的某些关键点。虽然我们的方法可以与任何几乎没有计算开销的任何现代对象检测框架结合使用,但我们示了SSD的扩展,以预测3D边界框。我们在不同数据集上测试我们的方法,以进行自动驾驶,并使用具有挑战性的Kitti 3D对象检测以及新颖的Nuscenes对象检测基准进行评估。尽管我们在两个基准测试上取得了竞争成果,但对于所有测试的数据集和图像分辨率,速度的速度超过20 fps而超过了当前的最新方法。

In this paper we propose a novel 3D single-shot object detection method for detecting vehicles in monocular RGB images. Our approach lifts 2D detections to 3D space by predicting additional regression and classification parameters and hence keeping the runtime close to pure 2D object detection. The additional parameters are transformed to 3D bounding box keypoints within the network under geometric constraints. Our proposed method features a full 3D description including all three angles of rotation without supervision by any labeled ground truth data for the object's orientation, as it focuses on certain keypoints within the image plane. While our approach can be combined with any modern object detection framework with only little computational overhead, we exemplify the extension of SSD for the prediction of 3D bounding boxes. We test our approach on different datasets for autonomous driving and evaluate it using the challenging KITTI 3D Object Detection as well as the novel nuScenes Object Detection benchmarks. While we achieve competitive results on both benchmarks we outperform current state-of-the-art methods in terms of speed with more than 20 FPS for all tested datasets and image resolutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源