论文标题

标志歧管是用于分析和比较数据集的工具

The flag manifold as a tool for analyzing and comparing data sets

论文作者

Ma, Xiaofeng, Kirby, Michael, Peterson, Chris

论文摘要

数据云的形状和方向反映了可能混淆模式识别系统的观测值的可变性。利用Grassmann歧管的子空间方法在应对这种可变性方面非常有助于。但是,当数据云包含足够多的与其他类别的杂物元素相对应的异常值或数据点的数量大于功能数量时,这种有用性就开始步履蹒跚。我们说明了使用标志歧管的嵌套子空间方法如何有助于处理此类其他混杂因素。标志歧管是嵌套子空间的参数空间,是Grassmann歧管的自然几何概括。为了对旗不同的旗帜进行实际比较,提出了算法,以确定flag歧管上的点$ [a],[b] $之间的距离,其中$ a $和$ b $是任意的正交矩阵代表,$ [a] $和$ [b] $,以及确定这些微型长度的初始方向。该方法在(超级)光谱图像的上下文中进行了说明,显示了环境维度,样本维度和标志结构的影响。

The shape and orientation of data clouds reflect variability in observations that can confound pattern recognition systems. Subspace methods, utilizing Grassmann manifolds, have been a great aid in dealing with such variability. However, this usefulness begins to falter when the data cloud contains sufficiently many outliers corresponding to stray elements from another class or when the number of data points is larger than the number of features. We illustrate how nested subspace methods, utilizing flag manifolds, can help to deal with such additional confounding factors. Flag manifolds, which are parameter spaces for nested subspaces, are a natural geometric generalization of Grassmann manifolds. To make practical comparisons on a flag manifold, algorithms are proposed for determining the distances between points $[A], [B]$ on a flag manifold, where $A$ and $B$ are arbitrary orthogonal matrix representatives for $[A]$ and $[B]$, and for determining the initial direction of these minimal length geodesics. The approach is illustrated in the context of (hyper) spectral imagery showing the impact of ambient dimension, sample dimension, and flag structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源