论文标题

在平衡神经网络中具有噪音,混乱和延迟的预测编码

Predictive coding in balanced neural networks with noise, chaos and delays

论文作者

Kadmon, Jonathan, Timcheck, Jonathan, Ganguli, Surya

论文摘要

生物神经网络面临着一项艰巨的任务:面对单个神经元内固有的随机性,不精确地指定的突触连通性以及突触传播中不可忽略的延迟,进行可靠的计算。打击这种生物异质性的一种常见方法是在$ n $神经元的大型冗余网络上平均,导致编码错误的编码为$ 1/\ sqrt {n} $。最近的工作展示了一种新的机制,即经常性尖峰网络可以有效编码动态刺激,从而实现了超级刻度缩放,其中编码误差降低为$ 1/n $。这种特定机制涉及两个关键思想:预测性编码,紧密的平衡或在强烈的进料输入和强烈反复反馈之间取消。然而,理论原理统治了平衡预测性编码的功效及其对噪声的鲁棒性,突触体重异质性和交流延迟仍然知之甚少。为了发现此类原则,我们引入了平衡预测性编码的可分析性可处理模型,在这种编码中,与以前的平衡网络模型不同,可以分离平衡程度和体重障碍的程度,并且我们开发了编码准确性的平均场理论。总体而言,我们的工作提供并解决了一个普遍的理论框架,用于剖析差异贡献神经噪声,突触障碍,混乱,突触延迟,并平衡预测性神经代码的忠诚度,揭示了平衡在实现超级学术缩放量表中的基本作用,并在以前的学术神经科学上脱离了学术上的模型。

Biological neural networks face a formidable task: performing reliable computations in the face of intrinsic stochasticity in individual neurons, imprecisely specified synaptic connectivity, and nonnegligible delays in synaptic transmission. A common approach to combatting such biological heterogeneity involves averaging over large redundant networks of $N$ neurons resulting in coding errors that decrease classically as $1/\sqrt{N}$. Recent work demonstrated a novel mechanism whereby recurrent spiking networks could efficiently encode dynamic stimuli, achieving a superclassical scaling in which coding errors decrease as $1/N$. This specific mechanism involved two key ideas: predictive coding, and a tight balance, or cancellation between strong feedforward inputs and strong recurrent feedback. However, the theoretical principles governing the efficacy of balanced predictive coding and its robustness to noise, synaptic weight heterogeneity and communication delays remain poorly understood. To discover such principles, we introduce an analytically tractable model of balanced predictive coding, in which the degree of balance and the degree of weight disorder can be dissociated unlike in previous balanced network models, and we develop a mean field theory of coding accuracy. Overall, our work provides and solves a general theoretical framework for dissecting the differential contributions neural noise, synaptic disorder, chaos, synaptic delays, and balance to the fidelity of predictive neural codes, reveals the fundamental role that balance plays in achieving superclassical scaling, and unifies previously disparate models in theoretical neuroscience.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源