论文标题

具有理性同源磁盘平滑的复杂表面奇异性

Complex surface singularities with rational homology disk smoothings

论文作者

Wahl, Jonathan

论文摘要

$ p^2/pq-1 $的环状商奇异性($ 0 <q <p,(p,q)= 1 $)具有平滑性,其Milnor纤维为$ \ Mathbb Q $ HD或理性同源性磁盘(即Milnor编号为$ 0 $)([9],5.9.1)。在1980年代,我们发现了此类奇异性的其他例子:三个三级侵入和六个单一无限的家庭,都是加权同质的。后来的Stipsicz,Szabó,Bhupal和作者([7],[1])的工作证明了这些是唯一的加权同质例子。在他的UNC博士学位论文(未发表但在[2]上获得)中,我们的学生雅各布·福勒(Jacob Fowler)完成了这些奇点的分析分类,并计算了每种情况下的平滑次数,除了$ \ Mathcal W $,$ \ Mathcal n $和$ \ \ \ \ Mathcal M $以外的类型。在本文中,我们描述了他的结果,并解决了剩余的案例;除了明显的对称性二元图,有一个唯一的$ \ mathbb Q $ HD平滑组件。该方法涉及研究在投影有理表面上有理曲线的配置。

A cyclic quotient singularity of type $p^2/pq-1$ ($0<q<p, (p,q)=1$) has a smoothing whose Milnor fibre is a $\mathbb Q$HD, or rational homology disk (i.e., the Milnor number is $0$) ([9], 5.9.1). In the 1980's, we discovered additional examples of such singularities: three triply-infinite and six singly-infinite families, all weighted homogeneous. Later work of Stipsicz, Szabó, Bhupal, and the author ([7], [1]) proved that these were the only weighted homogeneous examples. In his UNC PhD thesis (unpublished but available at [2]), our student Jacob Fowler completed the analytic classification of these singularities, and counted the number of smoothings in each case, except for types $\mathcal W$, $\mathcal N$, and $\mathcal M$. In this paper, we describe his results, and settle these remaining cases; there is a unique $\mathbb Q$HD smoothing component except in the cases of an obvious symmetry of the resolution dual graph. The method involves study of configurations of rational curves on projective rational surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源