论文标题
相对论重离子碰撞中的声学黑洞的鹰辐射
Hawking radiation from acoustic black holes in relativistic heavy ion collisions
论文作者
论文摘要
我们提出了一种重力的新模拟模型 - 在相对论重离子碰撞中产生的不断发展的夸克gluon血浆(QGP)。这个夸克gluon等离子体是已知的“最无情”的流体。在这些实验中,这种低运动学粘度被认为反映了QGP的性质密切相关。因此,它可以提供一个自然适合声学鹰辐射研究的量子流体的一个很好的例子。由于快速的纵向膨胀,在这里也自然保证了声音视野的存在,但总的来说,这种地平线不是静态的。使用超级相对论的量子分子动力学(URQMD)模拟,我们表明,在某些条件下,血浆的纵向速度(在声音地平线附近)可以在系统演化期间短暂跨越时间独立。在此期间,我们可以具有与(共形的)杀戮地平线与明显的地平线相吻合的(共形)杀伤范围。然后,渐近观察者将看到来自地平线的霍金辐射的声子的热通量。对于此处考虑的相对较低的能量碰撞,其中所得的QCD系统受非相关流体动力学的控制,我们估计鹰温度的温度约为4-5 meV(QCD流体的温度约为135 meV)。我们讨论了这种鹰辐射的实验特征,该辐射的实验性在横向动量分布的速度依赖性方面,在检测到的颗粒的速度依赖性方面。我们还讨论了将扩展到超偏见的情况,该案例应导致较高的鹰温度,以及动态范围的影响,导致温度的蓝色/红移。
We propose a new analogue model of gravity - the evolving quark gluon plasma (QGP) produced in relativistic heavy ion collisions. This quark gluon plasma is the "most inviscid" fluid known. Such low kinematic viscosity is believed to reflect strongly correlated nature for QGP in these experiments. Hence, it may provide a good example of a quantum fluid naturally suited to studies of acoustic Hawking radiation. Due to rapid longitudinal expansion, presence of a sonic horizon is also naturally guaranteed here, though, in general, this horizon is not static. Using Ultra relativistic quantum molecular dynamics (UrQMD) simulations, we show that, under certain conditions, the longitudinal velocity of the plasma, near the sonic horizon, can become time independent for a short span during the evolution of the system. During this period, we can have a conformally static acoustic metric with a (conformal) Killing horizon coinciding with the apparent horizon. An asymptotic observer will then see a thermal flux of phonons, constituting the Hawking radiation, coming from the horizon. For the relatively low energy collision considered here, where the resulting QCD system is governed by non-relativistic hydrodynamics, we estimate the Hawking temperature to be about 4-5 MeV (with the temperature of the QCD fluid being about 135 MeV). We discuss the experimental signatures of this Hawking radiation in terms of a thermal component in the rapidity dependence of the transverse momentum distribution of detected particles. We also discuss extension to ultra-relativistic case which should lead to a higher Hawking temperature, along with the effects of dynamical horizon leading to blue/red shift of the temperature.