论文标题

从预测到处方:数据驱动对COVID-19的响应

From predictions to prescriptions: A data-driven response to COVID-19

论文作者

Bertsimas, Dimitris, Boussioux, Léonard, Wright, Ryan Cory, Delarue, Arthur, Digalakis Jr., Vassilis, Jacquillat, Alexandre, Kitane, Driss Lahlou, Lukin, Galit, Li, Michael Lingzhi, Mingardi, Luca, Nohadani, Omid, Orfanoudaki, Agni, Papalexopoulos, Theodore, Paskov, Ivan, Pauphilet, Jean, Lami, Omar Skali, Stellato, Bartolomeo, Bouardi, Hamza Tazi, Carballo, Kimberly Villalobos, Wiberg, Holly, Zeng, Cynthia

论文摘要

COVID-19的大流行在全球范围内构成了前所未有的挑战。紧张的医疗保健提供者每天都在患者分类,治疗和护理管理方面做出艰难的决定。政策制定者采取了社会疏远的措施,以陡峭的经济价格降低疾病。我们设计了分析工具来支持这些决策并打击大流行。具体而言,我们提出了一种全面的数据驱动方法,以了解Covid-19的临床特征,预测其死亡率,预测其演变并最终减轻其影响。通过利用队列级别的临床数据,患者级医院数据和人口普查级流行病学数据,我们开发了一种综合的四步方法,结合了描述性,预测性和规范性分析。首先,我们将数百个临床研究汇总到Covid-19的最全面的数据库中,以描绘该疾病的新宏观图片。其次,我们建立个性化计算器,以预测感染和死亡率的风险,这是人口统计学,症状,合并症和实验室价值观的函数。第三,我们开发了一种新型的流行病学模型,以预测大流行的传播并为社会疏远政策提供信息。第四,我们提出了一个优化模型,以重新分配呼吸机并减轻短缺。我们的结果已在临床水平上被几家医院用于分类患者,指导护理管理,计划ICU容量和重新分布呼吸机。在政策层面上,他们目前正在一家大型机构和一家大型制药公司的公平疫苗分销计划中支持安全的重新政策,并已纳入美国疾病控制中心的大流行预测中。

The COVID-19 pandemic has created unprecedented challenges worldwide. Strained healthcare providers make difficult decisions on patient triage, treatment and care management on a daily basis. Policy makers have imposed social distancing measures to slow the disease, at a steep economic price. We design analytical tools to support these decisions and combat the pandemic. Specifically, we propose a comprehensive data-driven approach to understand the clinical characteristics of COVID-19, predict its mortality, forecast its evolution, and ultimately alleviate its impact. By leveraging cohort-level clinical data, patient-level hospital data, and census-level epidemiological data, we develop an integrated four-step approach, combining descriptive, predictive and prescriptive analytics. First, we aggregate hundreds of clinical studies into the most comprehensive database on COVID-19 to paint a new macroscopic picture of the disease. Second, we build personalized calculators to predict the risk of infection and mortality as a function of demographics, symptoms, comorbidities, and lab values. Third, we develop a novel epidemiological model to project the pandemic's spread and inform social distancing policies. Fourth, we propose an optimization model to re-allocate ventilators and alleviate shortages. Our results have been used at the clinical level by several hospitals to triage patients, guide care management, plan ICU capacity, and re-distribute ventilators. At the policy level, they are currently supporting safe back-to-work policies at a major institution and equitable vaccine distribution planning at a major pharmaceutical company, and have been integrated into the US Center for Disease Control's pandemic forecast.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源