论文标题
实验室研究富勒烯的形成(从较小到较大,c $ _ {44} $到c $ _ {70} $)/在气相中
Laboratory study of the formation of fullerene (from smaller to larger, C$_{44}$ to C$_{70}$)/anthracene cluster cations in the gas phase
论文作者
论文摘要
仍然尚不了解富勒烯在行星星云或星际介质中的富勒烯的形成和演化机制。在这里,我们介绍了簇阳离子(从较小到较大,c $ _ {44} $,再到c $ _ {70} $)的研究研究(c $ _ {14} $ h $ _ $ _ {10}} $)。该实验是在将四极离子陷阱与飞行时间质谱仪结合的设备中进行的。通过使用355 nm激光光束来照射被困的富勒烯阳离子(C $ _ {60} $$^+$或C $ _ {70} $$^+$),较小的富勒烯阳离子C $ _ {(60-2n)} $ _ 分别。然后与炭疽分子反应,新形成的一系列富勒烯/蒽簇阳离子是新形成的(例如,(c $ _ {14} $ h $ _ {10} $)c $ _ {(60-2n)} (c $ _ {14} $ h $ _ {10} $)c $ _ {(70-2M)} $$^+$,m = 1-11),并且观察到较小的富勒烯阳离子内反应性的略有差异。然而,与富勒烯C $ _ {60} $$^+$和c $ _ {70} $$^+$相比,较小的富勒烯显然显示出更高的反应性。 建议连续损失c $ _2 $碎片机制来解释较小的富勒烯阳离子的形成,然后与蒽分子进行添加反应,形成富勒烯 - 氨基烯簇簇。发现较高的激光能量和较长的照射时间是影响较小富勒烯阳离子形成的关键因素。这可能表明,在太空中的强辐射场环境(例如光子主导的区域)中,富勒烯有望遵循自上而下的进化途径,然后通过与共存的分子碰撞反应形成小谷物粉尘(例如,簇),在这里,在这里,小pahs。
The formation and evolution mechanism of fullerenes in the planetary nebula or in the interstellar medium are still not understood. Here we present the study on the cluster formation and the relative reactivity of fullerene cations (from smaller to larger, C$_{44}$ to C$_{70}$) with anthracene molecule (C$_{14}$H$_{10}$). The experiment is performed in the apparatus that combines a quadrupole ion trap with a time-of-flight mass spectrometer. By using a 355 nm laser beam to irradiate the trapped fullerenes cations (C$_{60}$$^+$ or C$_{70}$$^+$), smaller fullerene cations C$_{(60-2n)}$$^+$, n=1-8 or C$_{(70-2m)}$$^+$, m=1-11 are generated, respectively. Then reacting with anthracene molecules, series of fullerene/anthracene cluster cations are newly formed (e.g., (C$_{14}$H$_{10}$)C$_{(60-2n)}$$^+$, n=1-8 and (C$_{14}$H$_{10}$)C$_{(70-2m)}$$^+$, m=1-11), and slight difference of the reactivity within the smaller fullerene cations are observed. Nevertheless, smaller fullerenes show obviously higher reactivity when comparing to fullerene C$_{60}$$^+$ and C$_{70}$$^+$. A successive loss of C$_2$ fragments mechanism is suggested to account for the formation of smaller fullerene cations, which then undergo addition reaction with anthracene molecules to form the fullerene-anthracene cluster cations. It is found that the higher laser energy and longer irradiation time are key factors that affect the formation of smaller fullerene cations. This may indicate that in the strong radiation field environment (such as photon-dominated regions) in space, fullerenes are expected to follow the top-down evolution route, and then form small grain dust (e.g., clusters) through collision reaction with co-existing molecules, here, smaller PAHs.