论文标题

利用时间信息进行3D检测和域的适应

Leveraging Temporal Information for 3D Detection and Domain Adaptation

论文作者

Yu, Cunjun, Cai, Zhongang, Ren, Daxuan, Zhao, Haiyu

论文摘要

自从普遍使用激光雷达在自动驾驶中,对点云的学习进行了巨大改进。但是,最近的进展主要集中在单个360度扫描中检测对象,而无需广泛探索时间信息。在本报告中,我们描述了一种简单的方法来通过将时间戳添加到点云中,以传递学习管道中的此类信息,该时间戳在所有三个类中都显示出一致的改进。

Ever since the prevalent use of the LiDARs in autonomous driving, tremendous improvements have been made to the learning on the point clouds. However, recent progress largely focuses on detecting objects in a single 360-degree sweep, without extensively exploring the temporal information. In this report, we describe a simple way to pass such information in the learning pipeline by adding timestamps to the point clouds, which shows consistent improvements across all three classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源