论文标题
lio-sam:通过平滑和映射的紧密耦合激光乳
LIO-SAM: Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping
论文作者
论文摘要
我们提出了一个通过平滑和映射(Lio-sam)实现高度准确,实时的移动机器人轨迹估计和MAP构建的框架,用于通过平滑和映射,通过平滑和映射进行紧密耦合的激光镜惯性进程。 lio-sam在一个因子图上制定了LIDAR惯性射测,允许从不同来源作为系统中纳入许多相对和绝对测量,包括环闭合。惯性测量单元(IMU)预融合的估计运动点云点云,并对LiDAR ODMOTIENTRY优化产生了初始猜测。所获得的激光射击溶液用于估计IMU的偏置。为了确保实时的高性能,我们将旧的LiDAR扫描边缘化以进行姿势优化,而不是将激光雷达扫描与全球地图相匹配。在本地规模而不是全球范围内进行扫描匹配可以显着提高系统的实时性能,选择性介绍关键框架和有效的滑动窗口方法,该方法对固定尺寸的一组固定尺寸的“ sub-keyframes”集合进行了注册新的密钥帧。在三个平台上广泛评估了所提出的方法。
We propose a framework for tightly-coupled lidar inertial odometry via smoothing and mapping, LIO-SAM, that achieves highly accurate, real-time mobile robot trajectory estimation and map-building. LIO-SAM formulates lidar-inertial odometry atop a factor graph, allowing a multitude of relative and absolute measurements, including loop closures, to be incorporated from different sources as factors into the system. The estimated motion from inertial measurement unit (IMU) pre-integration de-skews point clouds and produces an initial guess for lidar odometry optimization. The obtained lidar odometry solution is used to estimate the bias of the IMU. To ensure high performance in real-time, we marginalize old lidar scans for pose optimization, rather than matching lidar scans to a global map. Scan-matching at a local scale instead of a global scale significantly improves the real-time performance of the system, as does the selective introduction of keyframes, and an efficient sliding window approach that registers a new keyframe to a fixed-size set of prior ``sub-keyframes.'' The proposed method is extensively evaluated on datasets gathered from three platforms over various scales and environments.