论文标题
分散光子结构的精确分散准正常模态(DQNM)的连续家族
A continuous family of Exact Dispersive Quasi-Normal Modal (DQNM) Expansions for dispersive photonic structures
论文作者
论文摘要
在光子学中,色散准正常模式(DQNM)是指光学谐振模式,与麦克斯韦方程相关的光谱问题解决方案,用于涉及分散介质的开放光子结构。由于这些DQNM是确定光学响应的成分,因此研究DQNM扩展形式主义是对所考虑系统的物理特性进行建模的关键。在本文中,我们强调与模式过度完整性相关的扩展的非唯一性,并根据可以自由选择的连续参数讨论DQNM扩展的家族。这些膨胀可以应用于分散性,各向异性甚至非重生材料。例如,我们特别说明了在2-D散射模型上的模态分析,其中直接从实际的测量数据中绘制了硅对象的介电常数。
In photonics, Dispersive Quasi-Normal Modes (DQNMs) refer to optical resonant modes, solutions of spectral problems associated with Maxwell's equations for open photonic structures involving dispersive media. Since these DQNMs are the constituents determining optical responses, studying DQNM expansion formalisms is the key to model the physical properties of a considered system. In this paper, we emphasize the non-uniqueness of the expansions related to the over-completeness of the set of modes and discuss a family of DQNM expansions depending on continuous parameters that can be freely chosen. These expansions can be applied to dispersive, anisotropic, and even non-reciprocal materials. As an example, we particularly demonstrate the modal analysis on a 2-D scattering model where the permittivity of a silicon object is drawn directly from actual measurement data.