论文标题
二维哈伯德模型中掺杂驱动的莫特过渡的纠缠和经典相关性
Entanglement and classical correlations at the doping-driven Mott transition in the two-dimensional Hubbard model
论文作者
论文摘要
量子信息理论的工具为表征相互作用的多体量子系统的阶段和相变提供了一种新的观点。哈伯德模型是此类系统的原型模型,可以用最少的假设来解释量子物质的丰富现象。在光学晶格中使用超电原子对纠缠相关特性的最新测量暗示,纠缠可以为理解掺杂的哈伯德模型的开放问题提供关键,包括伪造阶段的显着特性。这些实验发现需要一个理论框架和新的预测。从量子信息理论的角度来看,我们在这里以二维的方式接近掺杂的哈伯德模型。我们研究了plaquette细胞动力学均值场理论中掺杂驱动的莫特转变的局部熵和总互相信息。我们发现,在改变掺杂这两个纠缠相关的特性时,检测到莫特绝缘阶段,密切相关的伪随相位和金属相。在与纠缠相关的特性中印记,我们还发现了与金属一阶转换,有限的温度临界终点及其超临界交叉相关的伪gap。通过这个足迹,我们揭示了量子和经典相关性的意外相互作用。我们的工作表明,与纠缠相关的特性的急剧变化,而不是断裂的对称阶段,表征了有限温度下伪群相的开始。
Tools of quantum information theory offer a new perspective to characterize phases and phase transitions in interacting many-body quantum systems. The Hubbard model is the archetypal model of such systems and can explain rich phenomena of quantum matter with minimal assumptions. Recent measurements of entanglement-related properties of this model using ultracold atoms in optical lattices hint that entanglement could provide the key to understanding open questions of the doped Hubbard model, including the remarkable properties of the pseudogap phase. These experimental findings call for a theoretical framework and new predictions. Here we approach the doped Hubbard model in two dimensions from the perspective of quantum information theory. We study the local entropy and the total mutual information across the doping-driven Mott transition within plaquette cellular dynamical mean-field theory. We find that upon varying doping these two entanglement-related properties detect the Mott insulating phase, the strongly correlated pseudogap phase, and the metallic phase. Imprinted in the entanglement-related properties we also find the pseudogap to correlated metal first-order transition, its finite temperature critical endpoint, and its supercritical crossovers. Through this footprint we reveal an unexpected interplay of quantum and classical correlations. Our work shows that sharp variation in the entanglement-related properties and not broken symmetry phases characterizes the onset of the pseudogap phase at finite temperature.