论文标题
一个循环的传播器,BCFW递归和新散射方程
Propagators, BCFW Recursion and New Scattering Equations at One Loop
论文作者
论文摘要
我们研究了循环级传播器如何通过两种现代散射幅度的现代方法,即BCFW递归关系和散射方程形式主义而从树层产生。在本文的第一部分中,我们使用D维环动量的方便参数化来重新审视动量空间中一环积分的BCFW构造。我们制定了有或没有超对称性的明确示例,并在规格理论和重力中讨论非平面案例。在本文的第二部分中,我们研究了一种对单循环集成的替代方法,其中这些方法是基于新的一环散射方程式将其写成的。这些方程是受BCFW启发的,导致标准的Feynman型传播器,而不是首先源自Ambitwistor弦的形式主义的“线性”型环路级传播器。我们利用两种方法之间的类比,并使用BCFW递归提出了全面的世界表格公式的证明。
We investigate how loop-level propagators arise from tree level via a forward-limit procedure in two modern approaches to scattering amplitudes, namely the BCFW recursion relations and the scattering equations formalism. In the first part of the paper, we revisit the BCFW construction of one-loop integrands in momentum space, using a convenient parametrisation of the D-dimensional loop momentum. We work out explicit examples with and without supersymmetry, and discuss the non-planar case in both gauge theory and gravity. In the second part of the paper, we study an alternative approach to one-loop integrands, where these are written as worldsheet formulas based on new one-loop scattering equations. These equations, which are inspired by BCFW, lead to standard Feynman-type propagators, instead of the `linear'-type loop-level propagators that first arose from the formalism of ambitwistor strings. We exploit the analogies between the two approaches, and present a proof of an all-multiplicity worldsheet formula using the BCFW recursion.