论文标题
非分析性非平衡场理论:ISING模型的随机再加热
Non-Analytic Non-Equilibrium Field Theory: Stochastic Reheating of the Ising Model
论文作者
论文摘要
如果一个人允许在电势中进行非分析术语,则可以通过Landau-Ginzburg理论来描述多体非平衡稳态。我们通过确定与热浴的Ising磁体的情况并进行随机加热来证实这一主张:它是随机时间重置为paramagnet的。通过随机场理论和蒙特卡洛模拟的结合,我们揭示了通常的$φ^4 $电位如何被内在非平衡性质的非分析算子变形。我们通过对非平衡稳态的重新分析分析来证明它们在低温下的红外相关性。因此,铁磁固定点通过随机再加热不稳定,我们确定了新的非平衡固定点。
Many-body non-equilibrium steady states can be described by a Landau-Ginzburg theory if one allows non-analytic terms in the potential. We substantiate this claim by working out the case of the Ising magnet in contact with a thermal bath and undergoing stochastic reheating: It is reset to a paramagnet at random times. By a combination of stochastic field theory and Monte Carlo simulations, we unveil how the usual $φ^4$ potential is deformed by non-analytic operators of intrinsic non-equilibrium nature. We demonstrate their infrared relevance at low temperatures by a renormalization-group analysis of the non-equilibrium steady state. The equilibrium ferromagnetic fixed point is thus destabilized by stochastic reheating, and we identify the new non-equilibrium fixed point.