论文标题

动态渐近维数,用于虚拟循环基团的作用

Dynamic asymptotic dimension for actions of virtually cyclic groups

论文作者

Amini, Massoud, Li, Kang, Sawicki, Damian, Shakibazadeh, Ali

论文摘要

我们表明,在紧凑的Hausdorff空间上,无限循环基团的最小自由作用的动态渐近维始终是一个。这扩展了Guentner,Willett和YU的众所周知的结果,以最小的无限循环基团的自由作用。此外,最小化的假设可以用标记属性代替,我们证明了在有限的尺寸紧凑型Hausdorff空间上可数组的所有自由作用的标记属性,从而概括了在可计数环境中Szabo的结果。

We show that the dynamic asymptotic dimension of a minimal free action of an infinite virtually cyclic group on a compact Hausdorff space is always one. This extends a well-known result of Guentner, Willett, and Yu for minimal free actions of infinite cyclic groups. Furthermore, the minimality assumption can be replaced by the marker property, and we prove the marker property for all free actions of countable groups on finite dimensional compact Hausdorff spaces, generalising a result of Szabo in the metrisable setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源