论文标题
用于识别和定位主要顶点的更新的混合深度学习算法
An updated hybrid deep learning algorithm for identifying and locating primary vertices
论文作者
论文摘要
我们提出了一种改进的混合算法用于顶点,该算法将深度学习与常规方法结合在一起。即使该算法是顶点查找的通用方法,我们在这里将其作为LHCB实验的替代主要顶点(PV)查找工具的应用。 在2021年运行3的过渡中,LHCB将进行主要的亮度升级,从1.1到5.6个预期可见的PV,并且它将采用纯粹的软件触发器。我们使用自定义内核将较少的命中和轨道的稀疏3D空间转换为密集的1D数据集,然后应用深度学习技术来使用代理分布来查找PV位置,以在培训数据中编码真相。去年,我们报告说,使用几个卷积神经网络层上的内核训练网络的效率高于90%的效率,每个事件不超过0.2个假阳性(FPS)。修改算法的几个元素,我们现在取得的效率高于94%的效率,而FP速率显着降低。在我们迄今为止使用玩具蒙特卡洛(MC)进行的研究的地方,我们开始研究由完整的LHCB运行3个MC数据产生的KDE,包括在顶点定位器中进行完整的跟踪,而不是原始跟踪。
We present an improved hybrid algorithm for vertexing, that combines deep learning with conventional methods. Even though the algorithm is a generic approach to vertex finding, we focus here on it's application as an alternative Primary Vertex (PV) finding tool for the LHCb experiment. In the transition to Run 3 in 2021, LHCb will undergo a major luminosity upgrade, going from 1.1 to 5.6 expected visible PVs per event, and it will adopt a purely software trigger. We use a custom kernel to transform the sparse 3D space of hits and tracks into a dense 1D dataset, and then apply Deep Learning techniques to find PV locations using proxy distributions to encode the truth in training data. Last year we reported that training networks on our kernels using several Convolutional Neural Network layers yielded better than 90 % efficiency with no more than 0.2 False Positives (FPs) per event. Modifying several elements of the algorithm, we now achieve better than 94 % efficiency with a significantly lower FP rate. Where our studies to date have been made using toy Monte Carlo (MC), we began to study KDEs produced from complete LHCb Run 3 MC data, including full tracking in the vertex locator rather than proto-tracking.