论文标题

用于体内高光谱肿瘤类型分类的光谱空间横向横向跨斜线网络

Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo Hyperspectral Tumor Type Classification

论文作者

Bengs, Marcel, Gessert, Nils, Laffers, Wiebke, Eggert, Dennis, Westermann, Stephan, Mueller, Nina A., Gerstner, Andreas O. H., Betz, Christian, Schlaefer, Alexander

论文摘要

癌组织的早期检测对于长期患者生存至关重要。在头部和颈部区域中,典型的诊断程序是内窥镜干预措施,其中医学专家使用RGB摄像机图像手动评估组织。尽管健康和肿瘤区域通常更容易区分,但区分良性和恶性肿瘤却非常具有挑战性。这需要进行侵入性活检,然后进行诊断的组织学评估。同样,在肿瘤切除过程中,需要通过组织学分析来验证肿瘤缘。为避免不必要的组织切除,一种非侵入性的基于图像的诊断工具将非常有价值。最近,为此任务提出了与深度学习的高光谱成像,证明了对前体标本的有希望的结果。在这项工作中,我们证明了使用高光谱成像和深度学习的体内肿瘤类型分类的可行性。与常规RGB图像相比,我们分析了使用多个高光谱带的价值,并研究了几种机器学习模型使用其他光谱信息的能力。基于我们的见解,我们使用复发横向趋化模型来解决光谱和空间处理,以进行有效的光谱汇总和空间特征学习。我们的最佳模型达到了76.3%的AUC,明显优于以前的常规和深度学习方法。

Early detection of cancerous tissue is crucial for long-term patient survival. In the head and neck region, a typical diagnostic procedure is an endoscopic intervention where a medical expert manually assesses tissue using RGB camera images. While healthy and tumor regions are generally easier to distinguish, differentiating benign and malignant tumors is very challenging. This requires an invasive biopsy, followed by histological evaluation for diagnosis. Also, during tumor resection, tumor margins need to be verified by histological analysis. To avoid unnecessary tissue resection, a non-invasive, image-based diagnostic tool would be very valuable. Recently, hyperspectral imaging paired with deep learning has been proposed for this task, demonstrating promising results on ex-vivo specimens. In this work, we demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning. We analyze the value of using multiple hyperspectral bands compared to conventional RGB images and we study several machine learning models' ability to make use of the additional spectral information. Based on our insights, we address spectral and spatial processing using recurrent-convolutional models for effective spectral aggregating and spatial feature learning. Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源