论文标题
边界条件在散射可观察的量子计算中的作用
The role of boundary conditions in quantum computations of scattering observables
论文作者
论文摘要
量子计算可能会提供模拟与物理时间演化的量子染色体动力学等强烈相互交互的场理论的机会。与目前常规执行的欧几里得计算相反,这将使您可以访问Minkowski-Signature的相关器。但是,与当今的计算一样,量子计算策略仍然需要限制有限的系统大小,包括有限的,通常是周期性的空间体积。在这项工作中,我们研究了这种后果在提取类似浓顿和康普顿的散射幅度中。使用物理中介绍的框架。 Rev. D101 014509(2020),我们量化了各种$ 1+1 $ d Minkowski签名量的体积效应,并表明这些量可能是系统不确定性的重要来源,即使对于当今欧几里得计算的标准来说,这些体积也很大。然后,我们提出了一种改进策略,基于有限体积的对称性减少。这意味着在有限体积系统中,产生相同的洛伦兹不变的运动点可能仍然在物理上不同。正如我们所证明的那样,在数值和分析上,在此类集合上平均都可以显着抑制不需要的体积扭曲并改善物理散射幅度的提取。
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution. This would give access to Minkowski-signature correlators, in contrast to the Euclidean calculations routinely performed at present. However, as with present-day calculations, quantum computation strategies still require the restriction to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using the framework presented in Phys. Rev. D101 014509 (2020), we quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty, even for volumes that are very large by the standards of present-day Euclidean calculations. We then present an improvement strategy, based in the fact that the finite volume has a reduced symmetry. This implies that kinematic points, which yield the same Lorentz invariants, may still be physically distinct in the finite-volume system. As we demonstrate, both numerically and analytically, averaging over such sets can significantly suppress the unwanted volume distortions and improve the extraction of the physical scattering amplitudes.