论文标题
Schrödinger操作员的薄光谱
Schrödinger Operators with Thin Spectra
论文作者
论文摘要
Schrödinger操作员光谱的确定是数学量子力学中的一个基本问题。我们讨论了一系列结果,表明Schrödinger运营商可以表现出在Lebesgue度量和分形维度的意义上非常薄的光谱。我们首先对周期理论的结果进行了简要讨论,然后进行讨论,对具有薄光谱的多个模型。
The determination of the spectrum of a Schrödinger operator is a fundamental problem in mathematical quantum mechanics. We discuss a series of results showing that Schrödinger operators can exhibit spectra that are remarkably thin in the sense of Lebesgue measure and fractal dimensions. We begin with a brief discussion of results in the periodic theory, and then move to a discussion of aperiodic models with thin spectra.