论文标题

使用理性最小化器最小化凸功能

Minimizing Convex Functions with Rational Minimizers

论文作者

Jiang, Haotian

论文摘要

给定一个分离的Oracle $ \ Mathsf {so} $,用于convex函数$ f $在$ \ mathbb {r}^n $上定义的,它在带有半径$ r $的盒子内有一个积分的最小化器,我们显示如何在最多使用$ f $的确切最小化器(n \ log log log(n) + log(n) + f $ f $ f $ $ \ Mathsf {so} $和$ \ Mathsf {poly}(n,\ log(r))$ arithmetic操作,或(b)$ o(n \ log(nr))$调用$ \ mathsf {so} $} $和$ \ \ \ \ \ exp(o(n))\ cdot \ cdot \ cdot \ mathsf {polod and arith(arith arith arith arith(nr))(s so} $} $(arith)当$ f $的最小化器集具有不可或缺的极端点时,我们的算法输出了$ f $不可或缺的最小化器。对于多项式时间算法的$ O(N^2(n + \ log(r)))的先前最佳甲骨文复杂性和$ o(n^2 \ log(nr))$的指数时间算法$(n^2 \ log(nr))$改善了这一点。梳子。选择。 1984年,施普林格(Springer)1988年]三十年前。我们对Grötschel,Lovász和Schrijver的结果的改进概括为$ f $的最小化器集合是具有有界顶点复杂性的理性多面体。 对于次管函数最小化问题,我们的结果立即暗示着一种强烈的多项式算法,最多可以使$ O(n^3 \ log \ log \ log \ log \ log(n)/\ log(n))$调用评估甲骨文,而指数时间算法则最多使$ o(n^2 \ log log(n)$ call to评估。这些改进了以前最好的$ O(N^3 \ log^2(n))$ Oracle复杂性,用于[Lee,Sidford and Wong and Wong,Focs 2015]中给出的强烈多项式算法,以及[Dadush,Végh和Zambelli,Soda,Soda 2018],以及与Oracle Complectity $ O(n^n^3 3 3 3 3 3 3 3 \ ingultightient Time Algorithm一起使用)。 我们的结果是通过减少晶格中最短的向量问题来实现的。我们使用潜在功能分析其甲骨文复杂性,该功能同时捕获搜索集的大小和晶格的密度。

Given a separation oracle $\mathsf{SO}$ for a convex function $f$ defined on $\mathbb{R}^n$ that has an integral minimizer inside a box with radius $R$, we show how to find an exact minimizer of $f$ using at most (a) $O(n (n \log \log (n)/\log (n) + \log(R)))$ calls to $\mathsf{SO}$ and $\mathsf{poly}(n, \log(R))$ arithmetic operations, or (b) $O(n \log(nR))$ calls to $\mathsf{SO}$ and $\exp(O(n)) \cdot \mathsf{poly}(\log(R))$ arithmetic operations. When the set of minimizers of $f$ has integral extreme points, our algorithm outputs an integral minimizer of $f$. This improves upon the previously best oracle complexity of $O(n^2 (n + \log(R)))$ for polynomial time algorithms and $O(n^2\log(nR))$ for exponential time algorithms obtained by [Grötschel, Lovász and Schrijver, Prog. Comb. Opt. 1984, Springer 1988] over thirty years ago. Our improvement on Grötschel, Lovász and Schrijver's result generalizes to the setting where the set of minimizers of $f$ is a rational polyhedron with bounded vertex complexity. For the Submodular Function Minimization problem, our result immediately implies a strongly polynomial algorithm that makes at most $O(n^3 \log \log (n)/\log (n))$ calls to an evaluation oracle, and an exponential time algorithm that makes at most $O(n^2 \log(n))$ calls to an evaluation oracle. These improve upon the previously best $O(n^3 \log^2(n))$ oracle complexity for strongly polynomial algorithms given in [Lee, Sidford and Wong, FOCS 2015] and [Dadush, Végh and Zambelli, SODA 2018], and an exponential time algorithm with oracle complexity $O(n^3 \log(n))$ given in the former work. Our result is achieved via a reduction to the Shortest Vector Problem in lattices. We analyze its oracle complexity using a potential function that simultaneously captures the size of the search set and the density of the lattice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源