论文标题
MIRA:利用深层神经网络中的网络尺度文档中的多意式共同单击信息
MIRA: Leveraging Multi-Intention Co-click Information in Web-scale Document Retrieval using Deep Neural Networks
论文作者
论文摘要
我们研究了工业网络搜索中深层召回模型的问题,鉴于用户查询,它从数十亿名候选人中检索了数百个最相关的文件。共同的框架是基于神经嵌入的两个编码模型训练两个编码模型,这些模型分别学习查询和文档的分布式表示,并在潜在的语义空间中匹配它们。但是,所有退出的编码模型都仅利用文档本身的信息,在与查询术语匹配时,在实践中通常不够,尤其是对于硬尾部查询。在这项工作中,我们旨在利用其共同单击邻居的每个文档的其他信息,以帮助文件检索。挑战包括如何有效地提取信息并消除噪音,涉及深层模型中的密切单击信息,同时满足实时推论的数十亿级数据大小的需求。 为了处理串联关系中的噪声,我们首先提出了一个网络尺度的多意式联合单击文档图(MICG),该图形图(MICG)在单击意图级别上构建文档之间的共同单击连接,但不是在文档级别上。然后,我们基于BERT和图形注意力网络提出一个编码框架MIRA,该框架利用了两因素注意机制来汇总邻居。为了满足在线延迟要求,我们仅涉及文档侧的邻居信息,这可以节省耗时的查询邻居搜索。我们从两个主要的商业搜索引擎中进行了公共数据集和私人网络规模数据集的广泛脱机实验,这些数据集与几个基线相比,证明了该方法的有效性和可扩展性。进一步的案例研究表明,共键的关系主要有助于从两个方面提高网络搜索质量:关键概念增强和查询术语补充。
We study the problem of deep recall model in industrial web search, which is, given a user query, retrieve hundreds of most relevance documents from billions of candidates. The common framework is to train two encoding models based on neural embedding which learn the distributed representations of queries and documents separately and match them in the latent semantic space. However, all the exiting encoding models only leverage the information of the document itself, which is often not sufficient in practice when matching with query terms, especially for the hard tail queries. In this work we aim to leverage the additional information for each document from its co-click neighbour to help document retrieval. The challenges include how to effectively extract information and eliminate noise when involving co-click information in deep model while meet the demands of billion-scale data size for real time online inference. To handle the noise in co-click relations, we firstly propose a web-scale Multi-Intention Co-click document Graph(MICG) which builds the co-click connections between documents on click intention level but not on document level. Then we present an encoding framework MIRA based on Bert and graph attention networks which leverages a two-factor attention mechanism to aggregate neighbours. To meet the online latency requirements, we only involve neighbour information in document side, which can save the time-consuming query neighbor search in real time serving. We conduct extensive offline experiments on both public dataset and private web-scale dataset from two major commercial search engines demonstrating the effectiveness and scalability of the proposed method compared with several baselines. And a further case study reveals that co-click relations mainly help improve web search quality from two aspects: key concept enhancing and query term complementary.