论文标题

关于尺寸正规化的一环积分的有限表示

On Finite Representation of Dimensionally Regularized One-loop Integrals

论文作者

Österman, Juuso

论文摘要

欧几里得动量空间积分的维度正则化是量子场理论重新归一化的一种非常成功的技术。尽管它产生了一种直接的算法方法,可以通过它评估树级以外的图表,但至少从传统意义上讲,实际积分可以高度分歧。特别是,标准的一环积分可以用显式公式表示,该公式将紫外线和红外发散参数值关联到分析延续的特殊功能表达式。我们旨在讨论与分析持续结构相对应的有限积分表达式的表述。有效地,我们希望建立构成这种分析延续的等效类别的条件,或者构成导致它的正则化技术的适当集/条件。通过并排考虑部分和完全成功的策略,进一步证明了这一点,重点是两个最简单的方案:高斯和截止正规化。通过显式计算,我们旨在将初始积分的这些概括与维度正则化的结果相关联,考虑了多个质量(或动量)尺度和无缩度情况。我们通过应用这些合适的方案之一以及其他相关量表来实现受欢迎的积分的有限性。这使我们能够通过操作员以额外的量表删除所有多余的术语来设计尺寸正则化表达式(或本地描述)的正确表示。

Dimensional regularization of Euclidean momentum space integrals is a highly successful technique in renormalization of quantum field theories. While it yields a straightforward algorithmic method, with which to evaluate diagrams beyond tree level, the actual integrals can be highly divergent, at least in a traditional sense. In particular, standard one-loop integrals can be expressed in terms of an explicit formula, which associates both ultraviolet and infrared divergent parameter values to analytically continued special function expressions. We aim to discuss the formulation of finite integral expressions corresponding to the analytically continued structures. Effectively, we wish to establish conditions which form an equivalence class for this analytical continuation, or rather form a proper set/conditions of regularization techniques leading to it. This is further demonstrated by considering both partially and fully successful strategies side-by-side, with major emphasis on the two simplest functioning schemes: Gaussian and cut-off regularization. By explicit computations we aim to associate these generalisations of the initial integrals with the results from dimensional regularization, considering both multiple mass (or momentum) scales as well as scaleless cases. We achieve the finiteness of the sought-after integrals by applying one of these suitable schemes along with an additional scheme related scale. This enables us to devise a proper representation of the dimensionally regularized expressions (or a local description) through an operator removing all excess terms with the additional scale(s).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源