论文标题

高斯流程回归,并提供本地解释

Gaussian Process Regression with Local Explanation

论文作者

Yoshikawa, Yuya, Iwata, Tomoharu

论文摘要

高斯流程回归(GPR)是机器学习中使用的基本模型。由于其在通过内核处理各种数据结构时具有不确定性和多功能性的准确预测,GPR已成功地用于各种应用中。但是,在GPR中,输入的特征如何促进其预测。本文中,我们提出了GPR的局部解释,该解释揭示了每个样本预测的特征贡献,同时保持了GPR的预测性能。在提出的模型中,使用易于解释的本地线性模型对每个样本进行了预测和解释。假定局部线性模型的权重向量是由多元高斯工艺先验生成的。提出模型的超参数是通过最大化边际可能性来估算的。对于新的测试样本,提出的模型可以以封闭形式预测其目标变量和权重向量及其不确定性的值。各种基准数据集的实验结果验证了所提出的模型可以实现与GPR相当的预测性能,并且与现有可解释模型相当,并且可以在定量和定性上实现比它们更高的可解释性。

Gaussian process regression (GPR) is a fundamental model used in machine learning. Owing to its accurate prediction with uncertainty and versatility in handling various data structures via kernels, GPR has been successfully used in various applications. However, in GPR, how the features of an input contribute to its prediction cannot be interpreted. Herein, we propose GPR with local explanation, which reveals the feature contributions to the prediction of each sample, while maintaining the predictive performance of GPR. In the proposed model, both the prediction and explanation for each sample are performed using an easy-to-interpret locally linear model. The weight vector of the locally linear model is assumed to be generated from multivariate Gaussian process priors. The hyperparameters of the proposed models are estimated by maximizing the marginal likelihood. For a new test sample, the proposed model can predict the values of its target variable and weight vector, as well as their uncertainties, in a closed form. Experimental results on various benchmark datasets verify that the proposed model can achieve predictive performance comparable to those of GPR and superior to that of existing interpretable models, and can achieve higher interpretability than them, both quantitatively and qualitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源