论文标题

高斯纠缠的数值检测及其在识别约束纠缠状态的识别

Numerical detection of Gaussian entanglement and its application to the identification of bound entangled Gaussian states

论文作者

Ma, Shan, Xue, Shibei, Guo, Yu, Shu, Chuan-Cun

论文摘要

我们提出了一种用于解决连续变量量子系统中高斯量子状态的可分离性问题的数值方法。我们表明,可分离性问题可以作为确定一组线性基质不等式的可行性的等效问题。因此,可以使用现有的数值求解器有效地解决它。我们将此方法应用于识别绑定的纠缠高斯州。我们表明,所提出的方法可用于识别绑定的纠缠高斯状态,这些状态可能很简单,可以在量子光学器件中产生。

We present a numerical method for solving the separability problem of Gaussian quantum states in continuous-variable quantum systems. We show that the separability problem can be cast as an equivalent problem of determining the feasibility of a set of linear matrix inequalities. Thus, it can be efficiently solved using existent numerical solvers. We apply this method to the identification of bound entangled Gaussian states. We show that the proposed method can be used to identify bound entangled Gaussian states that could be simple enough to be producible in quantum optics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源