论文标题

用于数据驱动材料设计的各种集成模拟的联合自动存储库(JARVIS)

The Joint Automated Repository for Various Integrated Simulations (JARVIS) for data-driven materials design

论文作者

Choudhary, Kamal, Garrity, Kevin F., Reid, Andrew C. E., DeCost, Brian, Biacchi, Adam J., Walker, Angela R. Hight, Trautt, Zachary, Hattrick-Simpers, Jason, Kusne, A. Gilad, Centrone, Andrea, Davydov, Albert, Jiang, Jie, Pachter, Ruth, Cheon, Gowoon, Reed, Evan, Agrawal, Ankit, Qian, Xiaofeng, Sharma, Vinit, Zhuang, Houlong, Kalinin, Sergei V., Sumpter, Bobby G., Pilania, Ghanshyam, Acar, Pinar, Mandal, Subhasish, Haule, Kristjan, Vanderbilt, David, Rabe, Karin, Tavazza, Francesca

论文摘要

用于各种集成模拟的联合自动化存储库(JARVIS)是一种集成基础架构,可使用密度功能理论(DFT),经典力场(FF)和机器学习(ML)技术加速材料发现和设计。 Jarvis是由开发开放式数据库和工具的材料基因组倡议(MGI)原则的动机,以减少材料发现,优化和部署的成本和开发时间。 Jarvis的主要特征是:Jarvis-DFT,Jarvis-FF,Jarvis-ML和Jarvis-Tools。迄今为止,Jarvis由Jarvis-DFT中的40,000个材料和100万个计算的属性,1,500材料和110个jarvis-ff中的力场以及25毫升型号的材料型预测模型,用于Jarvis-ML,所有这些预测都在不断扩展。 Jarvis-Tools提供了脚本和工作流程,用于运行和分析各种模拟。我们将计算数据与实验或高保真计算方法进行比较,以评估预测中的误差/不确定性。除了现有的工作流程外,基础架构还可以作为数据驱动材料设计范式的一部分支持各种其他重要的技术应用程序。 JARVIS数据集和工具在网站上公开可用:https://jarvis.nist.gov。

The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques. JARVIS is motivated by the Materials Genome Initiative (MGI) principles of developing open-access databases and tools to reduce the cost and development time of materials discovery, optimization, and deployment. The major features of JARVIS are: JARVIS-DFT, JARVIS-FF, JARVIS-ML, and JARVIS-Tools. To date, JARVIS consists of 40,000 materials and 1 million calculated properties in JARVIS-DFT, 1,500 materials and 110 force-fields in JARVIS-FF, and 25 ML models for material-property predictions in JARVIS-ML, all of which are continuously expanding. JARVIS-Tools provides scripts and workflows for running and analyzing various simulations. We compare our computational data to experiments or high-fidelity computational methods wherever applicable to evaluate error/uncertainty in predictions. In addition to the existing workflows, the infrastructure can support a wide variety of other technologically important applications as part of the data-driven materials design paradigm. The JARVIS datasets and tools are publicly available at the website: https://jarvis.nist.gov .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源