论文标题

广义的路径对和大惊小怪的 - 卡塔兰三角形

Generalized Path Pairs and Fuss-Catalan Triangles

论文作者

Drube, Paul

论文摘要

路径对是对平行四边形多支球菌的修改,可提供加泰罗尼亚数字的另一种组合解释。更一般而言,长度$ n $和距离$δ$的路径对的数量对应于Shapiro所谓的加泰罗尼亚三角形的$(n-1,δ1)$。在本文中,我们将路径对$(γ_1,γ_2)$的概念扩大到$γ_1$和$γ_2$的情况下,然后在$γ_2$中的垂直步骤中执行垂直步骤的可划分条件​​。这创建了一个两参数的整数三角形家族,该家族概括了加泰罗尼亚三角形,并有资格作为许多参数选择的适当的Riordan阵列。特别是,我们使用通用的路径对为所有适当的Riordan阵列中的所有条目提供新的组合解释,以$ d(t),h(t),h(t),h(t),h(t))$ $ d(t)= c_k(t)= c_k(t)^i $,$ h(t)^i $,$ h(t) $ c_k(t)$是某些大惊小怪 - 卡塔兰号序列的生成功能(一些$ k \ geq 2 $)。然后,为跨更广泛的参数范围以及具有固定数量的非初始相交数量的弱路径对数量提供了封闭的公式,以范围更广泛的参数范围以及较宽的参数范围。

Path pairs are a modification of parallelogram polyominoes that provide yet another combinatorial interpretation of the Catalan numbers. More generally, the number of path pairs of length $n$ and distance $δ$ corresponds to the $(n-1,δ-1)$ entry of Shapiro's so-called Catalan triangle. In this paper, we widen the notion of path pairs $(γ_1,γ_2)$ to the situation where $γ_1$ and $γ_2$ may have different lengths, and then enforce divisibility conditions on runs of vertical steps in $γ_2$. This creates a two-parameter family of integer triangles that generalize the Catalan triangle and qualify as proper Riordan arrays for many choices of parameters. In particular, we use generalized path pairs to provide a new combinatorial interpretation for all entries in every proper Riordan array $\mathcal{R}(d(t),h(t))$ of the form $d(t) = C_k(t)^i$, $h(t) = t \kern+1pt C_k(t)^k$, where $1 \leq i \leq k$ and $C_k(t)$ is the generating function for some sequence of Fuss-Catalan numbers (some $k \geq 2$). Closed formulas are then provided for the number of generalized path pairs across an even broader range of parameters, as well as for the number of weak path pairs with a fixed number of non-initial intersections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源