论文标题

Graph2Kernel网格LSTM:通过学习自适应邻居的行人轨迹预测的多型模型

Graph2Kernel Grid-LSTM: A Multi-Cued Model for Pedestrian Trajectory Prediction by Learning Adaptive Neighborhoods

论文作者

Haddad, Sirin, Lam, Siew Kei

论文摘要

行人轨迹预测是一项著名的研究轨道,它已促进了人群社交和上下文互动的建模,并具有长期短期记忆(LSTM)的广泛使用,用于步行轨迹的时间表示。 现有方法使用虚拟社区作为固定网格,以通过调整过程来控制行人的社会状态,以控制社交互动的捕获方式。这需要对特定场景进行性能自定义,但可以降低方法的概括能力。在我们的工作中,我们部署了\ textit {grid-lstm},这是LSTM的最新扩展,该扩展是通过多维功能输入运行的。我们通过提出行人社区可以在设计中变得适应性来提出互动建模的新观点。我们使用\ textit {grid-lstm}作为编码器,以了解潜在的未来社区及其对人行人运动的影响,并且鉴于视觉和空间边界。我们的模型优于最先进的方法,这些方法在几个公开测试的监视视频上归一致。实验结果清楚地说明了我们跨数据集的方法的概括,这些数据集随场景特征和人群动态而变化。

Pedestrian trajectory prediction is a prominent research track that has advanced towards modelling of crowd social and contextual interactions, with extensive usage of Long Short-Term Memory (LSTM) for temporal representation of walking trajectories. Existing approaches use virtual neighborhoods as a fixed grid for pooling social states of pedestrians with tuning process that controls how social interactions are being captured. This entails performance customization to specific scenes but lowers the generalization capability of the approaches. In our work, we deploy \textit{Grid-LSTM}, a recent extension of LSTM, which operates over multidimensional feature inputs. We present a new perspective to interaction modeling by proposing that pedestrian neighborhoods can become adaptive in design. We use \textit{Grid-LSTM} as an encoder to learn about potential future neighborhoods and their influence on pedestrian motion given the visual and the spatial boundaries. Our model outperforms state-of-the-art approaches that collate resembling features over several publicly-tested surveillance videos. The experiment results clearly illustrate the generalization of our approach across datasets that varies in scene features and crowd dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源