论文标题

量化高通量密度功能理论中的不确定性:AFLOW,材料项目和OQMD的比较

Quantifying uncertainty in high-throughput density functional theory: a comparison of AFLOW, Materials Project, and OQMD

论文作者

Hegde, Vinay I., Borg, Christopher K. H., del Rosario, Zachary, Kim, Yoolhee, Hutchinson, Maxwell, Antono, Erin, Ling, Julia, Saxe, Paul, Saal, James E., Meredig, Bryce

论文摘要

高吞吐量密度功能理论(HT-DFT)计算中的一个核心挑战是选择输入参数和后处理技术的组合,这些技术可在所有材料类别中使用,同时还可以管理准确的成本折衷。为了研究这些参数选择的效果,我们合并了三个大HT-DFT数据库:自动流(AFLOW),材料项目(MP)和开放量子材料数据库(OQMD),并比较使用相同初始晶体结构计算出的材料的每对数据库中报告的属性。我们发现,HT-DFT的形成能和体积通常比带隙和总磁性更可复制。例如,很明显的记录对材料是金属(高达7%)还是磁性(最高15%)的意见分歧。计算属性之间的差异高达0.105 eV/原子(中位相对绝对差,或MRAD,6%)的地层能量,0.65Å$^3 $/原子(MRAD为4%)的体积为0.21 eV(MRAD为9%),带隙的频率为0.15 $ _ _ {$ rm b b by/rm rm b} $ rm b} $ rm b} $ rm b} $ rm b} $/r. rm b} $ rad abrad for for 8%(rm rm b} $ rad Unitial(mrad for for for for for for for 3 $ rm b} $ rad Unite(MRAD for for for for for for 8%) DFT和实验之间的差异。我们将一些较大的差异追溯到涉及伪电势,DFT+U形式主义和元素参考状态的选择,并认为HT-DFT的进一步标准化将对可重复性有益。

A central challenge in high throughput density functional theory (HT-DFT) calculations is selecting a combination of input parameters and post-processing techniques that can be used across all materials classes, while also managing accuracy-cost tradeoffs. To investigate the effects of these parameter choices, we consolidate three large HT-DFT databases: Automatic-FLOW (AFLOW), the Materials Project (MP), and the Open Quantum Materials Database (OQMD), and compare reported properties across each pair of databases for materials calculated using the same initial crystal structure. We find that HT-DFT formation energies and volumes are generally more reproducible than band gaps and total magnetizations; for instance, a notable fraction of records disagree on whether a material is metallic (up to 7%) or magnetic (up to 15%). The variance between calculated properties is as high as 0.105 eV/atom (median relative absolute difference, or MRAD, of 6%) for formation energy, 0.65 Å$^3$/atom (MRAD of 4%) for volume, 0.21 eV (MRAD of 9%) for band gap, and 0.15 $μ_{\rm B}$/formula unit (MRAD of 8%) for total magnetization, comparable to the differences between DFT and experiment. We trace some of the larger discrepancies to choices involving pseudopotentials, the DFT+U formalism, and elemental reference states, and argue that further standardization of HT-DFT would be beneficial to reproducibility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源