论文标题
关于普通,共面,离散玻尔兹曼方程模型的固定解决方案
On stationary solutions to normal, coplanar, discrete Boltzmann equation models
论文作者
论文摘要
该论文证明了具有给定INDATA的一类速度 - 污垢共扎的固定玻尔兹曼方程的重新归一化溶液。该证明是基于构造具有L1紧凑度的一系列近似序列,用于集成碰撞频率和增益项。使用Kolmogorov riesz定理获得紧凑性。
The paper proves existence of renormalized solutions for a class of velocity-discrete coplanar stationary Boltzmann equations with given indata. The proof is based on the construction of a sequence of approximations with L1 compactness for an integrated collision frequency and gain term. The compactness is obtained using the Kolmogorov Riesz theorem.