论文标题

多电极阵列记录的可扩展贝叶斯功能连接推断

Scalable Bayesian Functional Connectivity Inference for Multi-Electrode Array Recordings

论文作者

Zhao, Yun, Jiang, Richard, Xu, Zhenni, Guzman, Elmer, Hansma, Paul K., Petzold, Linda

论文摘要

多电极阵列(MEA)可以同时记录数百或数千个神经元的细胞外动作电位(也称为“尖峰”)。从尖峰火车推断功能网络是神经科学中的基本计算任务。随着MEA技术的发展,开发用于分析多个神经元活动作为网络的统计工具变得越来越重要。在本文中,我们提出了一个可扩展的贝叶斯框架,用于从MEA数据推断功能网络。我们的框架利用了神经元网络的分层结构。我们将大规模记录分为较小的本地网络进行网络推断,这不仅减轻了贝叶斯采样的计算负担,而且还提供了有关器官和大脑区域连接的有用见解。我们使用并行计算加快了昂贵的贝叶斯采样过程。在合成数据集和大规模现实世界中的录音上进行的实验显示了可扩展的贝叶斯框架的有效性和效率。从传播神经培养物到镉的受控实验中的网络推断提出了可区分的结果,并进一步证实了我们框架的实用性。

Multi-electrode arrays (MEAs) can record extracellular action potentials (also known as 'spikes') from hundreds or thousands of neurons simultaneously. Inference of a functional network from a spike train is a fundamental and formidable computational task in neuroscience. With the advancement of MEA technology, it has become increasingly crucial to develop statistical tools for analyzing multiple neuronal activity as a network. In this paper, we propose a scalable Bayesian framework for inference of functional networks from MEA data. Our framework makes use of the hierarchical structure of networks of neurons. We split the large scale recordings into smaller local networks for network inference, which not only eases the computational burden from Bayesian sampling but also provides useful insights on regional connections in organoids and brains. We speed up the expensive Bayesian sampling process by using parallel computing. Experiments on both synthetic datasets and large-scale real-world MEA recordings show the effectiveness and efficiency of the scalable Bayesian framework. Inference of networks from controlled experiments exposing neural cultures to cadmium presents distinguishable results and further confirms the utility of our framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源