论文标题
观察者奇异运动对各向同性背景频率频谱的影响:从单极到较高的多物
Effects of observer peculiar motion on the isotropic background frequency spectrum: from monopole to higher multipoles
论文作者
论文摘要
观察者奇特的运动在背景各向异性中产生增强效应,并具有与其光谱相关的频谱行为。我们研究如何修改各向同性单极发射的频谱并将其转移到较高多物下的频谱l。对于从无线电到Far-ir的各种模型,我们从球形谐波扩展到一定的LMAX方面进行了分析。我们得出一个线性方程系统,以获得球形谐波系数,并提供高达LMAX = 6的明确溶液作为n = lmax+1 colatududes的信号的线性组合。相关的Legendre多项式相对于π/2的对称性用于将系统分为两个子系统,一个用于L = 0,另一个用于L,另一个用于奇数L。这提高了解决方案的准确性,相对于任意的卵形选择。我们将方法应用于单极光谱的分析或半分析表达,即在四种类型的CMB畸变中,四种类型的外乳外背景叠加到CMB Planckian光谱以及它们的某些组合。我们以球形谐波系数,观察到的固有单孔和角度谱图之间的关系介绍了我们的结果。我们将方法结果与使用更多计算要求的数值集成或地图生成/反转获得的方法进行了比较。该方法被推广,以包括相对于太阳的观察者运动的效果。它的简单性和效率可以大大减轻准确预测和分析未来数据所需的计算工作。我们讨论了CMB固有各向异性的叠加以及观察者运动引起的效果,探索了在CMB光谱扭曲的情况下,可能会约束运动学偶极子嵌入的固有偶极子。
The observer peculiar motion produces boosting effects in the background anisotropies with frequency spectral behaviours related to its spectrum. We study how the frequency spectrum of the background isotropic monopole emission is modified and transferred to the frequency spectra at higher multipoles, l. We perform the analysis in terms of spherical harmonic expansion up to a certain lmax, for various models from radio to far-IR. We derive a system of linear equations to obtain spherical harmonic coefficients and provide explicit solutions up to lmax=6 as linear combinations of the signals at N=lmax+1 colatitudes. The associated Legendre polynomials symmetry with respect to π/2 is used to separate the system into two subsystems, one for l=0 and even l, the other for odd l. This improves the solutions accuracy with respect to an arbitrary colatitudes choice. We apply the method to analytical or semi-analytical representions of monopole spectra, i.e. to four types of CMB distortions, four types of extragalactic backgrounds superimposed to the CMB Planckian spectrum and some combinations of them. We present our results in terms of spherical harmonic coefficients, relationships between the observed and intrinsic monopoles, maps, angular power spectra. We compare the method results with the ones obtained using more computationally demanding numerical integrations or map generation/inversion. The method is generalized to include the effect of the observer motion relative to the Sun. Its simplicity and efficiency can significantly alleviate the computational effort needed for accurate predictions and for the analysis of future data. We discuss the superposition of the CMB intrinsic anisotropies and of the effects induced by the observer motion, exploring for the possibility of constraining the intrinsic dipole embedded in the kinematic dipole, in the presence of CMB spectral distortions.