论文标题
上下文关联一致的域适应语义分割
Contextual-Relation Consistent Domain Adaptation for Semantic Segmentation
论文作者
论文摘要
对于语义细分的无监督域适应性的最新进展显示出很大的潜力,可以减轻昂贵的每像素注释的需求。但是,大多数现有的作品通过在全球图像级别上对齐两个域的数据分布来解决域差异,而局部一致性在很大程度上被忽略了。本文介绍了一种创新的本地背景关系一致的域适应性(CRCDA)技术,旨在在全球层面的一致性期间实现本地级别的一致性。这个想法是仔细研究区域特征表示形式,并将其与本地级别的一致性保持一致。具体而言,CRCDA在标记的源域的特征空间中明确地学习并实施了典型的本地上下文关系,同时通过基于反向传播的对抗性学习将其传输到未标记的目标域。自适应熵最大的对手学习方案旨在最佳地对齐跨域的数百个本地上下文关系,而无需歧视器或额外的计算开销。拟议的CRCDA已在两个具有挑战性的域自适应分段任务(例如,GTA5到CityScapes和CityScapes合成)进行了广泛的评估,并且实验证明了与最新方法相比,其出色的细分性能。
Recent advances in unsupervised domain adaptation for semantic segmentation have shown great potentials to relieve the demand of expensive per-pixel annotations. However, most existing works address the domain discrepancy by aligning the data distributions of two domains at a global image level whereas the local consistencies are largely neglected. This paper presents an innovative local contextual-relation consistent domain adaptation (CrCDA) technique that aims to achieve local-level consistencies during the global-level alignment. The idea is to take a closer look at region-wise feature representations and align them for local-level consistencies. Specifically, CrCDA learns and enforces the prototypical local contextual-relations explicitly in the feature space of a labelled source domain while transferring them to an unlabelled target domain via backpropagation-based adversarial learning. An adaptive entropy max-min adversarial learning scheme is designed to optimally align these hundreds of local contextual-relations across domain without requiring discriminator or extra computation overhead. The proposed CrCDA has been evaluated extensively over two challenging domain adaptive segmentation tasks (e.g., GTA5 to Cityscapes and SYNTHIA to Cityscapes), and experiments demonstrate its superior segmentation performance as compared with state-of-the-art methods.