论文标题

流体:灵活顺序数据的统一评估框架

FLUID: A Unified Evaluation Framework for Flexible Sequential Data

论文作者

Wallingford, Matthew, Kusupati, Aditya, Alizadeh-Vahid, Keivan, Walsman, Aaron, Kembhavi, Aniruddha, Farhadi, Ali

论文摘要

现代ML方法在训练数据是IID,大规模且标记良好时表现出色。在不太理想的条件下学习仍然是一个开放的挑战。在不利条件下学习取得了长足的进步。每种方法都通过方法和见解获得不同的优势。这些方法解决了不同的挑战,例如依次或稀缺的培训示例,但是ML系统在部署前通常无法预料到ML系统在其一生中面临的困难条件。因此,需要在实际环境中处理许多学习挑战的一般ML系统。为了促进一般ML方法的目标,我们引入了一个新的统一评估框架 - 流体(灵活的顺序数据)。流体整合了几乎没有射击,连续,转移和表示学习的目标,同时可以比较和整合这些子领域的技术。在流体中,学习者面对数据流,并且必须在选择如何更新,快速适应新颖的课程并处理不断变化的数据分布时进行顺序预测;在计算计算总量的同时。我们对广泛的方法进行实验,这些方法对当前解决方案的优势和局限性提供了新的见解,并指出了要解决的新研究问题。作为更通用方法的起点,我们提出了两个新的基础线,它们的表现优于其他评估流体的方法。项目页面:https://raivn.cs.washington.edu/projects/fluid/。

Modern ML methods excel when training data is IID, large-scale, and well labeled. Learning in less ideal conditions remains an open challenge. The sub-fields of few-shot, continual, transfer, and representation learning have made substantial strides in learning under adverse conditions; each affording distinct advantages through methods and insights. These methods address different challenges such as data arriving sequentially or scarce training examples, however often the difficult conditions an ML system will face over its lifetime cannot be anticipated prior to deployment. Therefore, general ML systems which can handle the many challenges of learning in practical settings are needed. To foster research towards the goal of general ML methods, we introduce a new unified evaluation framework - FLUID (Flexible Sequential Data). FLUID integrates the objectives of few-shot, continual, transfer, and representation learning while enabling comparison and integration of techniques across these subfields. In FLUID, a learner faces a stream of data and must make sequential predictions while choosing how to update itself, adapt quickly to novel classes, and deal with changing data distributions; while accounting for the total amount of compute. We conduct experiments on a broad set of methods which shed new insight on the advantages and limitations of current solutions and indicate new research problems to solve. As a starting point towards more general methods, we present two new baselines which outperform other evaluated methods on FLUID. Project page: https://raivn.cs.washington.edu/projects/FLUID/.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源