论文标题
动态记忆以减轻连续学习环境中灾难性遗忘
Dynamic memory to alleviate catastrophic forgetting in continuous learning settings
论文作者
论文摘要
在医学成像中,技术进度或诊断程序的变化导致图像外观的持续变化。扫描仪制造商,重建内核,剂量,其他方案特定设置或对比剂的管理是影响图像内容的示例,这些示例独立于扫描生物学。这样的域和任务转移通过使模型随着时间的推移使模型过时,限制了机器学习算法在临床常规中的适用性。在这里,我们通过调整模型以在源域中看不见的差异,同时抵消灾难性的遗忘效果,以解决连续学习方案中数据转移的问题。我们的方法使用动态内存来促进多样化的培训数据子集的排练,以减轻遗忘。我们评估了使用两种不同的扫描仪协议和合成分类任务获得的常规临床CT数据的方法。实验表明,动态内存会在具有多个数据变化的设置中灾难性遗忘,而无需明确了解这些偏移何时发生。
In medical imaging, technical progress or changes in diagnostic procedures lead to a continuous change in image appearance. Scanner manufacturer, reconstruction kernel, dose, other protocol specific settings or administering of contrast agents are examples that influence image content independent of the scanned biology. Such domain and task shifts limit the applicability of machine learning algorithms in the clinical routine by rendering models obsolete over time. Here, we address the problem of data shifts in a continuous learning scenario by adapting a model to unseen variations in the source domain while counteracting catastrophic forgetting effects. Our method uses a dynamic memory to facilitate rehearsal of a diverse training data subset to mitigate forgetting. We evaluated our approach on routine clinical CT data obtained with two different scanner protocols and synthetic classification tasks. Experiments show that dynamic memory counters catastrophic forgetting in a setting with multiple data shifts without the necessity for explicit knowledge about when these shifts occur.