论文标题

使用马尔可夫模型对交通流量进行大规模分析和模拟

Large-scale Analysis and Simulation of Traffic Flow using Markov Models

论文作者

Besenczi, Renátó, Bátfai, Norbert, Jeszenszky, Péter, Major, Roland, Monori, Fanny, Ispány, Márton

论文摘要

在既定的运输基础设施中,尤其是在大型城市道路网络中的建模和模拟车辆的运动是一项重要任务。它有助于理解和处理交通问题,优化流量法规并实时调整流量管理,以实现意外的灾难事件。其他研究人员较早提出了一个可用于交通分析的数学严格随机模型,该模型基于图形和马尔可夫链理论之间的相互作用。该模型提供了一个过渡概率矩阵,该矩阵描述了流量的动态,并在道路网络上对车辆的独特固定分配。在本文中,通过引入二维固定分布的概念,为该模型提供了一个新的参数化,该分布可以处理流量的动态以及车辆的分布。此外,使用轨迹数据,应用了加权最小二乘估计方法来估计此新参数矩阵。在案例研究中,我们将我们的方法应用于OpenStreetMap项目的出租车轨迹预测数据集和道路网络数据,均公开可用。为了测试我们的方法,我们已经在软件中实现了拟议的模型。我们已经以中等大小和大型进行模拟,并且基于人工和真实数据集的模型和估计程序已被证明令人满意。在真实应用程序中,我们根据数据集在Porto的地图图上展开了固定分布。这里描述的方法结合了技术,这些技术共同用于分析大型道路网络上的流量。

Modeling and simulating movement of vehicles in established transportation infrastructures, especially in large urban road networks is an important task. It helps with understanding and handling traffic problems, optimizing traffic regulations and adapting the traffic management in real time for unexpected disaster events. A mathematically rigorous stochastic model that can be used for traffic analysis was proposed earlier by other researchers which is based on an interplay between graph and Markov chain theories. This model provides a transition probability matrix which describes the traffic's dynamic with its unique stationary distribution of the vehicles on the road network. In this paper, a new parametrization is presented for this model by introducing the concept of two-dimensional stationary distribution which can handle the traffic's dynamic together with the vehicles' distribution. In addition, the weighted least squares estimation method is applied for estimating this new parameter matrix using trajectory data. In a case study, we apply our method on the Taxi Trajectory Prediction dataset and road network data from the OpenStreetMap project, both available publicly. To test our approach, we have implemented the proposed model in software. We have run simulations in medium and large scales and both the model and estimation procedure, based on artificial and real datasets, have been proved satisfactory. In a real application, we have unfolded a stationary distribution on the map graph of Porto, based on the dataset. The approach described here combines techniques whose use together to analyze traffic on large road networks has not previously been reported.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源