论文标题
量子布朗尼运动的非马克维亚性
Non-Markovianity of Quantum Brownian Motion
论文作者
论文摘要
我们研究了Caldeira-Leggett模型的量子非马克维亚动力学,这是一种用于量子布朗尼运动的原型模型,描述了谐波振荡器,该模型描述了与谐波振荡器储层线性耦合的谐波振荡器。采用该模型的确切分析解决方案,可以确定任意耦合,温度和频率截止的内存效应的大小。在这里,量子非马克维亚性是根据开放系统及其环境之间的信息流来定义的,该信息通过Bures Metric量化为量子状态的距离度量。这种方法使我们能够讨论整个范围内的量子记忆效应,从弱到强耗散,以达到任意高斯初始状态。我们的结果与自旋玻色子问题的相应结果的比较表明,在两个范式模型的非马克维亚行为的结构上有着显着的相似性。
We study quantum non-Markovian dynamics of the Caldeira-Leggett model, a prototypical model for quantum Brownian motion describing a harmonic oscillator linearly coupled to a reservoir of harmonic oscillators. Employing the exact analytical solution of this model one can determine the size of memory effects for arbitrary couplings, temperatures and frequency cutoffs. Here, quantum non-Markovianity is defined in terms of the flow of information between the open system and its environment, which is quantified through the Bures metric as distance measure for quantum states. This approach allows us to discuss quantum memory effects in the whole range from weak to strong dissipation for arbitrary Gaussian initial states. A comparison of our results with the corresponding results for the spin-boson problem show a remarkable similarity in the structure of non-Markovian behavior of the two paradigmatic models.