论文标题

将图像映射到序数网络中

Mapping images into ordinal networks

论文作者

Pessa, Arthur A. B., Ribeiro, Haroldo V.

论文摘要

越来越多的抽象标志着网络科学的一些最近研究。示例包括将时间序列数据映射到网络中的算法的开发,其顶点和边缘可以具有不同的解释,而不仅仅是对复杂系统的零件和相互作用的经典思想。事实证明,这些方法可用于处理日益增长的复杂性和不同数据集的数量。但是,这种算法的使用主要限于一维数据,并且很少努力将这些方法扩展到诸如图像之类的高维数据。在这里,我们提出了用于将图像映射到网络中的序数网络算法的概括。我们研究了用于定义网络节点和链接的符号化过程的连接性约束的出现,这又使我们能够得出从随机图像获得的序数网络的确切结构。我们在一系列应用中说明了这种新算法的使用,这些应用程序涉及周期性装饰品的随机化,二维分数布朗尼运动和ISING模型产生的图像以及一组自然纹理的数据集。这些示例表明,从序数网络获得的措施(例如平均最短路径和全局节点熵)提取与粗糙度和对称性相关的重要图像特性,可抵抗噪声,并且可以比从简单图像分类任务中从灰度的共同循环矩阵中提取的传统纹理描述获得更高的准确性。

An increasing abstraction has marked some recent investigations in network science. Examples include the development of algorithms that map time series data into networks whose vertices and edges can have different interpretations, beyond the classical idea of parts and interactions of a complex system. These approaches have proven useful for dealing with the growing complexity and volume of diverse data sets. However, the use of such algorithms is mostly limited to one-dimension data, and there has been little effort towards extending these methods to higher-dimensional data such as images. Here we propose a generalization for the ordinal network algorithm for mapping images into networks. We investigate the emergence of connectivity constraints inherited from the symbolization process used for defining the network nodes and links, which in turn allows us to derive the exact structure of ordinal networks obtained from random images. We illustrate the use of this new algorithm in a series of applications involving randomization of periodic ornaments, images generated by two-dimensional fractional Brownian motion and the Ising model, and a data set of natural textures. These examples show that measures obtained from ordinal networks (such as average shortest path and global node entropy) extract important image properties related to roughness and symmetry, are robust against noise, and can achieve higher accuracy than traditional texture descriptors extracted from gray-level co-occurrence matrices in simple image classification tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源