论文标题

电阻距离,基尔乔夫指数和凯门尼在花图中的常数

Resistance distance, Kirchhoff index, and Kemeny's constant in flower graphs

论文作者

Faught, Nolan, Kempton, Mark, Knudson, Adam

论文摘要

我们获得了一个普通图中的任何一对节点之间的电阻距离(或有效电阻)的通用公式,我们称之为花图。花图是通过以循环方式识别给定碱基图的多个副本的节点获得的。我们将通用公式应用于两个特定的花图系列,其中基本图是完整的图或周期。我们还使用我们的抗性公式获得了Kirchhoff指数和Kemeny的一般花图常数的边界。对于基本图是完整图或周期的花图,我们获得了Kirchhoff指数和Kemeny常数的精确封闭形式表达式。

We obtain a general formula for the resistance distance (or effective resistance) between any pair of nodes in a general family of graphs which we call flower graphs. Flower graphs are obtained from identifying nodes of multiple copies of a given base graph in a cyclic way. We apply our general formula to two specific families of flower graphs, where the base graph is either a complete graph or a cycle. We also obtain bounds on the Kirchhoff index and Kemeny's constant of general flower graphs using our formula for resistance. For flower graphs whose base graph is a complete graph or a cycle, we obtain exact, closed form expressions for the Kirchhoff index and Kemeny's constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源