论文标题
重新思考的共同态度对象检测
Re-thinking Co-Salient Object Detection
论文作者
论文摘要
在本文中,我们对图像的共同定位对象检测(COSOD)进行了全面研究。 COSOD是一个新兴的且快速增长的显着物体检测(SOD),旨在检测一组图像中的突出物体。但是,现有的COSOD数据集通常具有严重的数据偏差,假设每组图像都包含相似的视觉外观的显着对象。这种偏见会导致在现有数据集中训练的模型的理想设置和有效性,在现实生活中受到损害,在现实生活中,相似之处通常是语义或概念性的。为了解决此问题,我们首先引入了一个新的基准,称为cosod3k in the Wild,它需要大量的语义环境,这使其比现有的COSOD数据集更具挑战性。我们的COSOD3K由3,316个高质量的精心选择的图像组成,分为具有分层注释的160组。这些图像涵盖了广泛的类别,形状,物体大小和背景。其次,我们集成了现有的SOD技术,以构建一个统一的可训练的COSOD框架,该框架在该领域早就应该了。具体而言,我们提出了一种新颖的Coeg-Net,该新型Coeg-net通过共同注意的投影策略来增强我们先前的模型EGNET,以实现快速的共同信息学习。 COEG-NET完全利用了先前的大规模SOD数据集,并显着提高了模型的可扩展性和稳定性。第三,我们全面概述了40种尖端算法,其中18个基准测试了三个具有挑战性的COSOD数据集(Icoseg,Cosal2015和我们的COSOD3K),并报告了更详细的(即组级)绩效分析。最后,我们讨论COSOD的挑战和未来作品。我们希望我们的研究能够大大推动COSOD社区的增长。基准工具箱和结果可在我们的项目页面上找到,网址为http://dpfan.net/cosod3k/。
In this paper, we conduct a comprehensive study on the co-salient object detection (CoSOD) problem for images. CoSOD is an emerging and rapidly growing extension of salient object detection (SOD), which aims to detect the co-occurring salient objects in a group of images. However, existing CoSOD datasets often have a serious data bias, assuming that each group of images contains salient objects of similar visual appearances. This bias can lead to the ideal settings and effectiveness of models trained on existing datasets, being impaired in real-life situations, where similarities are usually semantic or conceptual. To tackle this issue, we first introduce a new benchmark, called CoSOD3k in the wild, which requires a large amount of semantic context, making it more challenging than existing CoSOD datasets. Our CoSOD3k consists of 3,316 high-quality, elaborately selected images divided into 160 groups with hierarchical annotations. The images span a wide range of categories, shapes, object sizes, and backgrounds. Second, we integrate the existing SOD techniques to build a unified, trainable CoSOD framework, which is long overdue in this field. Specifically, we propose a novel CoEG-Net that augments our prior model EGNet with a co-attention projection strategy to enable fast common information learning. CoEG-Net fully leverages previous large-scale SOD datasets and significantly improves the model scalability and stability. Third, we comprehensively summarize 40 cutting-edge algorithms, benchmarking 18 of them over three challenging CoSOD datasets (iCoSeg, CoSal2015, and our CoSOD3k), and reporting more detailed (i.e., group-level) performance analysis. Finally, we discuss the challenges and future works of CoSOD. We hope that our study will give a strong boost to growth in the CoSOD community. The benchmark toolbox and results are available on our project page at http://dpfan.net/CoSOD3K/.