论文标题

多项式环的新同事自动形态

A new co-tame automorphism of the polynomial ring

论文作者

Yasuda, Shoya

论文摘要

在本文中,我们讨论了特征零字段中n个变量中多项式环的自动形态组的亚组。如果F和仿射自动形态包含驯服亚组,则据说自动形态F是共同称为。在2017年,EDO-LEWIS为自动形态的共同陈述提供了足够的条件。令El(N)为满足EDO-LEWIS状况的所有自动形态的集合。然后,对于多项式环的自动形态组上的某些拓扑,El(n)闭合的任何元素都是共同称呼的。此外,以前已知的所有共同型自动形态属于El(n)的封闭。在本文中,我们给出了不属于El(n)闭合的N变量中的共同型自动形态的第一个示例。

In this paper, we discuss subgroups of the automorphism group of the polynomial ring in n variables over a field of characteristic zero. An automorphism F is said to be co-tame if the subgroup generated by F and affine automorphisms contains the tame subgroup. In 2017, Edo-Lewis gave a sufficient condition for co-tameness of automorphisms. Let EL(n) be the set of all automorphisms satisfying Edo-Lewis's condition. Then, for a certain topology on the automorphism group of the polynomial ring, any element of the closure of EL(n) is co-tame. Moreover, all the co-tame automorphisms previously known belong to the closure of EL(n). In this paper, we give the first example of co-tame automorphisms in n variables which do not belong to the closure of EL(n).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源