论文标题

三维混合空间的离散韦伯不等式,并应用于磁静态的HHO近似

A discrete Weber inequality on three-dimensional hybrid spaces with application to the HHO approximation of magnetostatics

论文作者

Chave, Florent, Di Pietro, Daniele A., Lemaire, Simon

论文摘要

我们证明了第一个Weber不等式的离散版本在三维混合空间上,该空间由附着在多面部网格的元素和面上的多项式载体跨越。然后,我们在其(一阶)场和(二阶)矢量电位配方中引入了两种混合高阶方法,以供磁静态模型的近似值。这些方法适用于一般的多面体网格,并允许任意近似阶。利用先前建立的离散Weber不平等,我们对这两种方法进行全面分析。我们最终在一组测试箱上验证了它们。

We prove a discrete version of the first Weber inequality on three-dimensional hybrid spaces spanned by vectors of polynomials attached to the elements and faces of a polyhedral mesh. We then introduce two Hybrid High-Order methods for the approximation of the magnetostatics model, in both its (first-order) field and (second-order) vector potential formulations. These methods are applicable on general polyhedral meshes, and allow for arbitrary orders of approximation. Leveraging the previously established discrete Weber inequality, we perform a comprehensive analysis of the two methods. We finally validate them on a set of test-cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源