论文标题
通过RFID成像监视零售商店中客户的浏览行为
Monitoring Browsing Behavior of Customers in Retail Stores via RFID Imaging
论文作者
论文摘要
在本文中,我们建议使用商业现成的(COTS)单静电RFID设备(即一次使用单个天线来传输和从标签接收RFID信号)来监视诸如零售商店等地显示项目前客户面前客户的浏览活动。为此,我们提出了TagSee,这是一种基于单恒定RFID成像的多人成像系统。 Tagsee基于这样的见解:当客户在架子上浏览物品时,它们位于沿着货架和读者边界部署的标签之间,这会改变RFID信号沿着的多路径,以及RFID信号的RSS和相位值,读者都会收到读者的变化。基于读者观察到的这些变化,TagSee构建了客户的粗粒图像。之后,TagSee通过分析构造的图像来标识客户正在浏览的项目。本文的主要新颖性是通过通过强大的,分析模型驱动的深度学习,RFID成像来构造粗粒粒子图像,在展示项目前实现浏览行为监控。为了实现这一目标,我们首先使用单恒定的RFID设备来制定成像人类的问题,并得出一个近似的分析成像模型,该模型将RFID信号中人类障碍物引起的变化相关。然后,基于此模型,我们开发了一个深度学习框架,以高准确性地将图像客户形象。我们使用Impinj Speedway R420读取器和Smartrac Dogbone RFID标签实现TAGSEE方案。 Tagsee可以使用仅3-4位用户的培训数据,在多人场景中实现〜90%以上的TPR,而FPR的FPR可以达到〜10%。
In this paper, we propose to use commercial off-the-shelf (COTS) monostatic RFID devices (i.e. which use a single antenna at a time for both transmitting and receiving RFID signals to and from the tags) to monitor browsing activity of customers in front of display items in places such as retail stores. To this end, we propose TagSee, a multi-person imaging system based on monostatic RFID imaging. TagSee is based on the insight that when customers are browsing the items on a shelf, they stand between the tags deployed along the boundaries of the shelf and the reader, which changes the multi-paths that the RFID signals travel along, and both the RSS and phase values of the RFID signals that the reader receives change. Based on these variations observed by the reader, TagSee constructs a coarse grained image of the customers. Afterwards, TagSee identifies the items that are being browsed by the customers by analyzing the constructed images. The key novelty of this paper is on achieving browsing behavior monitoring of multiple customers in front of display items by constructing coarse grained images via robust, analytical model-driven deep learning based, RFID imaging. To achieve this, we first mathematically formulate the problem of imaging humans using monostatic RFID devices and derive an approximate analytical imaging model that correlates the variations caused by human obstructions in the RFID signals. Based on this model, we then develop a deep learning framework to robustly image customers with high accuracy. We implement TagSee scheme using a Impinj Speedway R420 reader and SMARTRAC DogBone RFID tags. TagSee can achieve a TPR of more than ~90% and a FPR of less than ~10% in multi-person scenarios using training data from just 3-4 users.