论文标题

简约引擎:第一部分;物理系统计算率的限制

Engines of Parsimony: Part I; Limits on Computational Rates in Physical Systems

论文作者

Earley, Hannah

论文摘要

我们分析了三维空间的给定凸区域的最大持续计算速率,但受到电力传递和散热的几何约束。我们在量子系统和经典系统中都找到了通用的上限,将$ v $是区域量和$ a $面积的缩放为$ \ sqrt {av} $。达到此界限需要使用可逆计算,否则将其缩放为$ a $。通过将我们的分析专门针对布朗古典系统的情况,我们还提供了半构建的证据,暗示了通过分子计算机实现这些界限的实施。对于天文规模的区域,一般相对论效应变得很重要,并且与$ \ sqrt {ar} $成比例的界限变得更加限制,并且发现适用于$ r $,而$ r $是其半径。还表明,通常可以避免计算结构中的不均匀性。这些结果在图1中以图形方式描述。

We analyse the maximum achievable rate of sustained computation for a given convex region of three dimensional space subject to geometric constraints on power delivery and heat dissipation. We find a universal upper bound across both quantum and classical systems, scaling as $\sqrt{AV}$ where $V$ is the region volume and $A$ its area. Attaining this bound requires the use of reversible computation, else it falls to scaling as $A$. By specialising our analysis to the case of Brownian classical systems, we also give a semi-constructive proof suggestive of an implementation attaining these bounds by means of molecular computers. For regions of astronomical size, general relativistic effects become significant and more restrictive bounds proportional to $\sqrt{AR}$ and $R$ are found to apply, where $R$ is its radius. It is also shown that inhomogeneity in computational structure is generally to be avoided. These results are depicted graphically in Figure 1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源