论文标题

Graphopt:图形形成的学习优化模型

GraphOpt: Learning Optimization Models of Graph Formation

论文作者

Trivedi, Rakshit, Yang, Jiachen, Zha, Hongyuan

论文摘要

形成机制是研究复杂网络的基础,但是从观察结果中学习它们是具有挑战性的。在现实世界中,通常只能访问最终的构造图,而不是完整的构造过程,并且观察到的图具有复杂的结构特性。在这项工作中,我们提出了GraphOpt,这是一个端到端的框架,共同学习了图形结构形成的隐式模型,并以潜在目标函数的形式发现了基本的优化机制。学到的目标可以用作观察到的图形属性的解释,从而借出本身以跨域内的不同图形传输。 GraphOpt在图中构成了链接形成作为顺序决策过程,并使用最大熵逆增强学习算法解决了它。此外,它采用了一个新型的连续行动空间,可帮助可伸缩。从经验上讲,我们证明GraphOpt发现了具有不同特征的图形的潜在客观。 Graphopt还学习了一个强大的随机策略,该策略可以实现竞争性的链接预测性能,而无需在此任务上明确训练,并能够进一步构建具有类似于观测图的属性的图形。

Formation mechanisms are fundamental to the study of complex networks, but learning them from observations is challenging. In real-world domains, one often has access only to the final constructed graph, instead of the full construction process, and observed graphs exhibit complex structural properties. In this work, we propose GraphOpt, an end-to-end framework that jointly learns an implicit model of graph structure formation and discovers an underlying optimization mechanism in the form of a latent objective function. The learned objective can serve as an explanation for the observed graph properties, thereby lending itself to transfer across different graphs within a domain. GraphOpt poses link formation in graphs as a sequential decision-making process and solves it using maximum entropy inverse reinforcement learning algorithm. Further, it employs a novel continuous latent action space that aids scalability. Empirically, we demonstrate that GraphOpt discovers a latent objective transferable across graphs with different characteristics. GraphOpt also learns a robust stochastic policy that achieves competitive link prediction performance without being explicitly trained on this task and further enables construction of graphs with properties similar to those of the observed graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源