论文标题

Riemann-Hilbert对应并吹出表面缺陷

Riemann-Hilbert correspondence and blown up surface defects

论文作者

Jeong, Saebyeok, Nekrasov, Nikita

论文摘要

二维量子场理论和紫红色系统的异构粒细胞变形的关系具有悠久的历史。最近,四维$ \ Mathcal {n} = 2 $量规理论以多种角色加入了聚会。在本文中,我们研究了与$ n_f = 4 $基本的超级甲状化的$ su(2)$理论相交的半bps表面缺陷的真空期望值。我们显示它们在带有$ 5 $常规奇异性的球体上形成了紫红色系统的水平段,计算单调型,并定义了相关的异构粒子tau功能。在伴侣纸上引发的半BP表面缺陷的存在下,我们获得了吉尔公式,建立了超对称仪表理论与经典集成性的拓扑字符串/游离效费的意外关系。

The relationship of two dimensional quantum field theory and isomonodromic deformations of Fuchsian systems has a long history. Recently four-dimensional $\mathcal{N}=2$ gauge theories joined the party in a multitude of roles. In this paper we study the vacuum expectation values of intersecting half-BPS surface defects in $SU(2)$ theory with $N_f=4$ fundamental hypermultiplets. We show they form a horizontal section of a Fuchsian system on a sphere with $5$ regular singularities, calculate the monodromy, and define the associated isomonodromic tau-function. Using the blowup formula in the presence of half-BPS surface defects, initiated in the companion paper, we obtain the GIL formula, establishing an unexpected relation of the topological string/free fermion regime of supersymmetric gauge theory to classical integrability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源