论文标题

水资源管理的预测分析:机器学习和生存分析

Predictive Analytics for Water Asset Management: Machine Learning and Survival Analysis

论文作者

Rahbaralam, Maryam, Modesto, David, Cardús, Jaume, Abdollahi, Amir, Cucchietti, Fernando M

论文摘要

了解绩效并确定在其生命周期中维护饮用水管网络的优先资源是水资产管理的关键部分。这种重要网络的翻新通常受到对管道进行物理访问的困难或不可能的阻碍。我们研究了水管故障预测的统计和机器学习框架。我们使用古典和现代分类器进行短期预测和生存分析,以提供更广泛的观点和长期预测,通常需要用于翻新的经济分析。为了丰富这些模型,我们基于水分配领域知识引入了新的预测因素,并采用了现代的过度采样技术来弥补每年观察到的一些失败的高失衡。对于我们的案例研究,我们使用一个数据集,其中包含西班牙巴塞罗那水分配网络中所有管道的故障记录。结果阐明了重要的风险因素的影响,例如管道的几何形状,年龄,材料和土壤覆盖物等,并可以帮助公用事业经理执行更明智的预测维护任务。

Understanding performance and prioritizing resources for the maintenance of the drinking-water pipe network throughout its life-cycle is a key part of water asset management. Renovation of this vital network is generally hindered by the difficulty or impossibility to gain physical access to the pipes. We study a statistical and machine learning framework for the prediction of water pipe failures. We employ classical and modern classifiers for a short-term prediction and survival analysis to provide a broader perspective and long-term forecast, usually needed for the economic analysis of the renovation. To enrich these models, we introduce new predictors based on water distribution domain knowledge and employ a modern oversampling technique to remedy the high imbalance coming from the few failures observed each year. For our case study, we use a dataset containing the failure records of all pipes within the water distribution network in Barcelona, Spain. The results shed light on the effect of important risk factors, such as pipe geometry, age, material, and soil cover, among others, and can help utility managers conduct more informed predictive maintenance tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源